EP2AGX95EF29C4N Altera, EP2AGX95EF29C4N Datasheet - Page 148

no-image

EP2AGX95EF29C4N

Manufacturer Part Number
EP2AGX95EF29C4N
Description
IC ARRIA II GX FPGA 95K 780FBGA
Manufacturer
Altera
Series
Arria II GXr

Specifications of EP2AGX95EF29C4N

Number Of Logic Elements/cells
89178
Number Of Labs/clbs
3747
Total Ram Bits
6679
Number Of I /o
372
Voltage - Supply
0.87 V ~ 0.93 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
780-FBGA
Family Name
Arria® II GX
Number Of Logic Blocks/elements
93674
# I/os (max)
372
Frequency (max)
500MHz
Operating Supply Voltage (typ)
900mV
Logic Cells
93674
Ram Bits
7025459.2
Operating Supply Voltage (min)
0.87V
Operating Supply Voltage (max)
0.93V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
780
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP2AGX95EF29C4N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP2AGX95EF29C4N
Manufacturer:
ALTERA
0
Part Number:
EP2AGX95EF29C4N
Manufacturer:
ALTERA/阿尔特拉
Quantity:
20 000
5–44
Arria II Device Handbook Volume 1: Device Interfaces and Integration
1
When you reconfigure the counter clock frequency, you cannot reconfigure the
corresponding counter phase shift settings with the same interface. Instead,
reconfigure the phase shifts in real time with the dynamic phase shift reconfiguration
interface. If you reconfigure the counter frequency, but want to keep the same
non-zero phase shift setting (for example, 90°) on the clock output, you must
reconfigure the phase shift immediately after reconfiguring the counter clock
frequency.
Post-Scale Counters (C0 to C9)
You can configure the multiply or divide values and duty cycle of post-scale counters
in real time. Each counter has an 8-bit high-time setting and an 8-bit low-time setting.
The duty cycle is the ratio of output high- or low-time to the total cycle time, which is
the sum of the two. Additionally, these counters have two control bits, rbypass for
bypassing the counter, and rselodd to select the output clock duty cycle.
When the rbypass bit is set to 1, it bypasses the counter, resulting in a divide by 1.
When this bit is set to 0, the high- and low-time counters are added to compute the
effective division of the VCO output frequency. For example, if the post-scale divide
factor is 10, the high- and low-count values could be set to 5 and 5, respectively, to
achieve a 50-50% duty cycle. The PLL implements this duty cycle by transitioning the
output clock from high to low on the rising edge of the VCO output clock. However, a
4 and 6 setting for the high- and low-count values, respectively, would produce an
output clock with a 40-60% duty cycle.
The rselodd bit indicates an odd divide factor for the VCO output frequency along
with a 50% duty cycle. For example, if the post-scale divide factor is 3, the high- and
low-time count values could be set to 2 and 1, respectively, to achieve this division.
This implies a 67%-33% duty cycle. If you require a 50%-50% duty cycle, you can set
the rselodd control bit to 1 to achieve this duty cycle despite an odd division factor.
The PLL implements this duty cycle by transitioning the output clock from high to
low on a falling edge of the VCO output clock. When you set rselodd = 1, you
subtract 0.5 cycles from the high time and you add 0.5 cycles to the low time. For
example:
High-time count = 2 cycles
Low-time count = 1 cycle
rselodd = 1 effectively equals:
High-time count = 1.5 cycles
Low-time count = 1.5 cycles
Duty cycle = (1.5/3) % high-time count and (1.5/3)% low-time count
Chapter 5: Clock Networks and PLLs in Arria II Devices
December 2010 Altera Corporation
PLLs in Arria II Devices

Related parts for EP2AGX95EF29C4N