AFS250-FGG256 Actel, AFS250-FGG256 Datasheet - Page 72

FPGA - Field Programmable Gate Array 250K System Gates

AFS250-FGG256

Manufacturer Part Number
AFS250-FGG256
Description
FPGA - Field Programmable Gate Array 250K System Gates
Manufacturer
Actel
Datasheet

Specifications of AFS250-FGG256

Processor Series
AFS250
Core
IP Core
Maximum Operating Frequency
1098.9 MHz
Number Of Programmable I/os
114
Data Ram Size
36864
Supply Voltage (max)
1.575 V
Maximum Operating Temperature
+ 70 C
Minimum Operating Temperature
0 C
Development Tools By Supplier
AFS-Eval-Kit, AFS-BRD600, FlashPro 3, FlashPro Lite, Silicon-Explorer II, Silicon-Sculptor 3, SI-EX-TCA
Mounting Style
SMD/SMT
Supply Voltage (min)
1.425 V
Number Of Gates
250 K
Package / Case
FPBGA-256
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AFS250-FGG256
Manufacturer:
Actel
Quantity:
135
Part Number:
AFS250-FGG256
Manufacturer:
ACTEL
Quantity:
6 800
Part Number:
AFS250-FGG256
Manufacturer:
Microsemi SoC
Quantity:
10 000
Part Number:
AFS250-FGG256I
Manufacturer:
Microsemi SoC
Quantity:
10 000
Device Architecture
2- 56
FlashROM
Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core
fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each
bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core
45).
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a
synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address
from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM
address from the FPGA core define which of the 16 bytes in the bank is being accessed.
The maximum FlashROM access clock is 20 MHz.
FlashROM access cycle—the address has to be set up on the rising edge of the clock for DOUT to be
valid on the next falling edge of the clock.
If the address is unchanged for two cycles:
If the address unchanged for three cycles:
Figure 2-45 • FlashROM Architecture
D0 becomes invalid 10 ns after the second rising edge of the clock.
D0 becomes valid again 10 ns after the second falling edge.
D0 becomes invalid 10 ns after the second rising edge of the clock.
D0 becomes valid again 10 ns after the second falling edge.
D0 becomes invalid 10 ns after the third rising edge of the clock.
D0 becomes valid again 10 ns after the third falling edge.
7
6
5
4
3
2
1
0
15
Byte Number in Bank
14
13
12
11
10
R e visio n 1
9
4 LSB of ADDR (READ)
8
Figure 2-46
7
6
5
shows the timing behavior of the
4
3
2
1
0
(Figure 2-

Related parts for AFS250-FGG256