MC68EC060RC50 Freescale Semiconductor, MC68EC060RC50 Datasheet - Page 364

IC MPU 32BIT 50MHZ 206-PGA

MC68EC060RC50

Manufacturer Part Number
MC68EC060RC50
Description
IC MPU 32BIT 50MHZ 206-PGA
Manufacturer
Freescale Semiconductor
Datasheets

Specifications of MC68EC060RC50

Processor Type
M680x0 32-Bit
Speed
50MHz
Voltage
3.3V
Mounting Type
Surface Mount
Package / Case
206-PGA
Family Name
M68000
Device Core
ColdFire
Device Core Size
32b
Frequency (max)
50MHz
Instruction Set Architecture
RISC
Supply Voltage 1 (typ)
3.3V
Operating Supply Voltage (max)
3.465V
Operating Supply Voltage (min)
3.135V
Operating Temp Range
0C to 110C
Operating Temperature Classification
Commercial
Mounting
Through Hole
Pin Count
206
Package Type
PGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Features
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68EC060RC50
Manufacturer:
NXP
Quantity:
1 746
The next two sections of the module do not require system customizing. To provide these
sections in a “black box”, they are packaged in “pseudo-assembly” files. The main advan-
tage of this method of packaging is that changing the syntax of this pseudo-assembly file
can be done by any word processor with global search and replace capability. Also, when it
is time to update the MC68060SP, only these pseudo-assembly files need to be replaced,
the system customized code does not need modification.
Figure C-2 shows an example pseudo-assembly file.
The Entry-point Dispatch Section must immediately follow the call-out dispatch table (kernel
modules only). The function entry points are implemented as address offsets from the top
of the module. Each function entry point is eight bytes in width. Each entry point contains an
unconditional branch to another location within the code section. This feature ensures that
future releases of the module would not necessitate a recompile of the system-customized
software envelope.
For example, consider the case of the M68060SP floating-point kernel module. This module
has a 128-byte call-out dispatch table. Assuming that a symbol _060FPSP_TOP points to
the top of the module, and a jump to the third function of the module is needed, the system
call is as such:
To gain additional performance, it is possible to avoid the double-branch penalty through the
Entry-point Dispatch Section by determining the branch target of each entry point into the
associated code section function addresses. However, this may make it more difficult to
upgrade to future releases without recompiling software envelopes that call into the
M68060SP.
The code section contains the actual M68060SP software. If the code section requires a call
to an external function, it calculates the address of the external function given the informa-
tion contained in the appropriate call-out entry. The code section is normally entered via a
branch instruction from the entry-point dispatch section.
Figure C-3 provides a visual example of the module interface. The symbol names outside
the boxes represent global symbol names defined by the system integrator. Internal sym-
bols used by the M68060SP source code are represented as labels inside the boxes. Note
that the call-out code example contains approximate code and is shown to emphasize that
module-relative address needs to be filled into the call-out dispatch table.
MOTOROLA
dc.l
dc.l
dc.l
dc.l
$60ff0000,$20920000,$60ff0000,$1f5c0000
$60ff0000,$0d040000,$60ff0000,$0eb80000
$60ff0000,$24300000,$60ff0000,$22ca0000
$00000000,$00000000,$00000000,$00000000
bra
_060FPSP_TOP+128+(2*8)
Figure C-2. Example Pseudo-Assembly File
M68060 USER’S MANUAL
MC68060 Software Package
C-3

Related parts for MC68EC060RC50