C8051F501-IQ Silicon Laboratories Inc, C8051F501-IQ Datasheet - Page 246

IC 8051 MCU 64K FLASH 48-QFP

C8051F501-IQ

Manufacturer Part Number
C8051F501-IQ
Description
IC 8051 MCU 64K FLASH 48-QFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F50xr
Datasheets

Specifications of C8051F501-IQ

Program Memory Type
FLASH
Program Memory Size
64KB (64K x 8)
Package / Case
48-QFP
Mfg Application Notes
LIN Bootloader AppNote
Core Processor
8051
Core Size
8-Bit
Speed
50MHz
Connectivity
EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
POR, PWM, Temp Sensor, WDT
Number Of I /o
40
Ram Size
4.25K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.25 V
Data Converters
A/D 32x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Processor Series
C8051F5x
Core
8051
Data Bus Width
8 bit
Data Ram Size
4.25 KB
Interface Type
I2C/SPI/UART
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
40
Number Of Timers
4
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F500DK
Minimum Operating Temperature
- 40 C
On-chip Adc
32-ch x 12-bit
Package
48PQFP
Device Core
8051
Family Name
C8051F50x
Maximum Speed
50 MHz
Operating Supply Voltage
2.5|3.3|5 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
336-1527 - KIT DEV FOR C8051F50X
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1512

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F501-IQ
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F501-IQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
C8051F50x/F51x
24.3. Configuration and Operation
UART0 provides standard asynchronous, full duplex communication. It can operate in a point-to-point
serial communications application, or as a node on a multi-processor serial interface. To operate in a point-
to-point application, where there are only two devices on the serial bus, the MCE0 bit in SMOD0 should be
cleared to 0. For operation as part of a multi-processor communications bus, the MCE0 and XBE0 bits
should both be set to 1. In both types of applications, data is transmitted from the microcontroller on the
TX0 pin, and received on the RX0 pin. The TX0 and RX0 pins are configured using the crossbar and the
Port I/O registers, as detailed in Section “20. Port Input/Output” on page 177.
In typical UART communications, The transmit (TX) output of one device is connected to the receive (RX)
input of the other device, either directly or through a bus transceiver, as shown in Figure 24.5.
24.3.1. Data Transmission
Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Inter-
rupt Flag (SCON0.1) will be set at the end of any transmission (the beginning of the stop-bit time). If
enabled, an interrupt will occur when TI0 is set.
If the extra bit function is enabled (XBE0 = 1) and the parity function is disabled (PE0 = 0), the value of the
TBX0 (SCON0.3) bit will be sent in the extra bit position. When the parity function is enabled (PE0 = 1),
hardware will generate the parity bit according to the selected parity type (selected with S0PT[1:0]), and
append it to the data field. Note: when parity is enabled, the extra bit function is not available.
24.3.2. Data Reception
Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the
stop bit is received, the data byte will be stored in the receive FIFO if the following conditions are met: the
receive FIFO (3 bytes deep) must not be full, and the stop bit(s) must be logic 1. In the event that the
receive FIFO is full, the incoming byte will be lost, and a Receive FIFO Overrun Error will be generated
(OVR0 in register SCON0 will be set to logic 1). If the stop bit(s) were logic 0, the incoming data will not be
stored in the receive FIFO. If the reception conditions are met, the data is stored in the receive FIFO, and
the RI0 flag will be set. Note: when MCE0 = 1, RI0 will only be set if the extra bit was equal to 1. Data can
be read from the receive FIFO by reading the SBUF0 register. The SBUF0 register represents the oldest
byte in the FIFO. After SBUF0 is read, the next byte in the FIFO is immediately loaded into SBUF0, and
space is made available in the FIFO for another incoming byte. If enabled, an interrupt will occur when RI0
is set.RI0 can only be cleared to 0 by software when there is no more information in the FIFO. The recom-
mended procedure to empty the FIFO contents is:
1. Clear RI0 to 0.
2. Read SBUF0.
3. Check RI0, and repeat starting at step 1 if RI0 is set to 1.
246
Figure 24.5. Typical UART Interconnect Diagram
USB Port
PC
USB
MCU
RX
TX
Rev. 1.2
USB-to-UART
CP2102
Bridge
OR
RX
TX
TX
RX
C8051Fxxx
C8051Fxxx

Related parts for C8051F501-IQ