AT32UC3B1128 Atmel Corporation, AT32UC3B1128 Datasheet - Page 115

no-image

AT32UC3B1128

Manufacturer Part Number
AT32UC3B1128
Description
Manufacturer
Atmel Corporation

Specifications of AT32UC3B1128

Flash (kbytes)
128 Kbytes
Pin Count
48
Max. Operating Frequency
60 MHz
Cpu
32-bit AVR
# Of Touch Channels
32
Hardware Qtouch Acquisition
No
Max I/o Pins
28
Ext Interrupts
28
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
3
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
6
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
3.0-3.6 or (1.65-1.95+3.0-3.6)
Operating Voltage (vcc)
3.0-3.6 or (1.65-1.95+3.0-3.6)
Fpu
No
Mpu / Mmu
Yes / No
Timers
10
Output Compare Channels
16
Input Capture Channels
6
Pwm Channels
13
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3B1128-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT32UC3B1128-AUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT32UC3B1128-U
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
9.3.3.6
9.3.3.7
32002F–03/2010
Transmit queue and overruns
Trace and reset
Figure 9-5.
Messages from various sources are inserted in a Transmit Queue (TXQ), which stores a number
of frames. This queue acts as a FIFO which allows messages to be inserted more rapidly than
they can be retrieved by the emulator.
The queue holds 16 frames. If more messages are inserted than there is room for in the queue,
information will be lost, and an overrun situation occurs. The TXQ will block any more messages
from being inserted, and allow the queue to be emptied by the emulator before allowing any
more messages to be inserted. The first message to be inserted after the overrun is cleared, is
an Error message, which informs the emulator that an overrun has occurred and which types of
trace messages have been lost. After this, transmission continues as normal.
Alternatively, the user can configure the OCD to halt the CPU to prevent overruns. This can be
done selectively for different message types, and is controlled by writing to the Overrun Control
(OVC) bits in the DC register.
If any of the OVC bits are set, watchpoint trace messages will usually not generate TXQ over-
flow. However, triggering an program and data watchpoint on the same instruction may in some
rare cases cause an overrun independently of the OVC settings, since a large amount of trace
message data will be produced for this instruction.
All pending trace messages in the Transmit Queue are flushed if: the OCD is reset by a system
reset; the OCD is disabled; or an application reset is triggered by writing to the DC:RES bit.
Thus, if the CPU is reset, but not the OCD, the program flow can be observed by program trace.
However, if the debugger resets the system, the remaining messages in the queue are of no
value, and expected to be flushed.
Note that if the OCD is disabled (by clearing DC:DBE or by a system reset), trace is suspended
until DC:DBE is written to one. The DC:TM bits must be written simultaneously, and define which
trace features should now be active.
Similarly, when an application reset is triggered by writing DC:RES, the DC:TM bits are written
simultaneously and define which trace features should now be active.
M C K O ( D D R = 1 )
M C K O ( D D R = 0 )
M S E O [1 . . 0 ]
M D O [ 5. . 0 ]
Example of a Nexus message transmission with single and double datarate.
IDLE
1 1
TCODE = 4
0 0 0 1 0 0
SOM
0 0
NORMAL
1 1 1 1 1 0
EVT-ID = 2
Zero stuffing
0 0 0 0 1 1
EVLP
0 1
I-CNT = 63
0 0 0 1 0 1
U-ADDR = 5
EOM
1 1
AVR32
115

Related parts for AT32UC3B1128