AT32UC3A1512AU Atmel Corporation, AT32UC3A1512AU Datasheet - Page 217

no-image

AT32UC3A1512AU

Manufacturer Part Number
AT32UC3A1512AU
Description
Manufacturer
Atmel Corporation

Specifications of AT32UC3A1512AU

Flash (kbytes)
512 Kbytes
Pin Count
100
Max. Operating Frequency
66 MHz
Cpu
32-bit AVR
# Of Touch Channels
32
Hardware Qtouch Acquisition
No
Max I/o Pins
69
Ext Interrupts
69
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device + OTG
Spi
6
Twi (i2c)
1
Uart
4
Ssc
1
Ethernet
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Dac Channels
2
Dac Resolution (bits)
16
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
3.0-3.6 or (1.65-1.95+3.0-3.6)
Operating Voltage (vcc)
3.0-3.6 or (1.65-1.95+3.0-3.6)
Fpu
No
Mpu / Mmu
Yes / No
Timers
10
Output Compare Channels
16
Input Capture Channels
6
Pwm Channels
13
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3A1512AU-AUR
Manufacturer:
Atmel
Quantity:
10 000
32058K AVR32-01/12
23.8.9
Name:
Access Type:
• CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.
1 = The inactive state value of SPCK is logic level one.
CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.
• NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.
1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.
NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.
• CSNAAT: Chip Select Not Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is acheived
1 = The Peripheral Chip Select Line rises after every transfer
CSNAAT can be used to force the Peripheral Chip Select Line to go inactive after every transfer. This allows successful
interfacing to SPI slave devices that require this behavior.
• CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.
1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.
• BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used, see
page
218.
31
23
15
7
SPI Chip Select Register
30
22
14
6
BITS
29
21
13
5
CSR0... CSR3
Read/Write
28
20
12
4
DLYBCT
DLYBS
SCBR
CSAAT
27
19
11
3
CSNAAT
26
18
10
2
NCPHA
25
17
9
1
AT32UC3A
Table 23-4 on
CPOL
24
16
8
0
217

Related parts for AT32UC3A1512AU