PIC16F1937-E/MV Microchip Technology, PIC16F1937-E/MV Datasheet - Page 242

14KB Flash, 512B RAM, 256B EEPROM, LCD, 1.8-5.5V 40 UQFN 5x5x0.5mm TUBE

PIC16F1937-E/MV

Manufacturer Part Number
PIC16F1937-E/MV
Description
14KB Flash, 512B RAM, 256B EEPROM, LCD, 1.8-5.5V 40 UQFN 5x5x0.5mm TUBE
Manufacturer
Microchip Technology
Series
PIC® XLP™ 16Fr
Datasheet

Specifications of PIC16F1937-E/MV

Processor Series
PIC16F
Core
PIC
Program Memory Type
Flash
Program Memory Size
14 KB
Data Ram Size
256 B
Interface Type
MI2C, SPI, EUSART
Number Of Timers
5
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
Package / Case
UQFN-40
Development Tools By Supplier
MPLAB IDE Software
Minimum Operating Temperature
- 40 C
Core Processor
PIC
Core Size
8-Bit
Speed
32MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
36
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 14x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Lead Free Status / Rohs Status
 Details
PIC16(L)F1934/6/7
24.2
The Serial Peripheral Interface (SPI) bus is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices communicate
in a master/slave environment where the master device
initiates the communication. A slave device is
controlled through a Chip Select known as Slave
Select.
The SPI bus specifies four signal connections:
• Serial Clock (SCK)
• Serial Data Out (SDO)
• Serial Data In (SDI)
• Slave Select (SS)
Figure 24-1
module when operating in SPI Mode.
The SPI bus operates with a single master device and
one or more slave devices. When multiple slave
devices are used, an independent Slave Select con-
nection is required from the master device to each
slave device.
Figure 24-4
master device and multiple slave devices.
The master selects only one slave at a time. Most slave
devices have tri-state outputs so their output signal
appears disconnected from the bus when they are not
selected.
Transmissions involve two shift registers, eight bits in
size, one in the master and one in the slave. With either
the master or the slave device, data is always shifted
out one bit at a time, with the Most Significant bit (MSb)
shifted out first. At the same time, a new Least
Significant bit (LSb) is shifted into the same register.
Figure 24-5
processors configured as master and slave devices.
Data is shifted out of both shift registers on the pro-
grammed clock edge and latched on the opposite edge
of the clock.
The master device transmits information out on its SDO
output pin which is connected to, and received by, the
slave’s SDI input pin. The slave device transmits infor-
mation out on its SDO output pin, which is connected
to, and received by, the master’s SDI input pin.
To begin communication, the master device first sends
out the clock signal. Both the master and the slave
devices should be configured for the same clock polar-
ity.
The master device starts a transmission by sending out
the MSb from its shift register. The slave device reads
this bit from that same line and saves it into the LSb
position of its shift register.
During each SPI clock cycle, a full-duplex data
transmission occurs. This means that while the master
device is sending out the MSb from its shift register (on
DS41364E-page 242
SPI Mode Overview
shows a typical connection between two
shows the block diagram of the MSSP
shows a typical connection between a
its SDO pin) and the slave device is reading this bit and
saving it as the LSb of its shift register, that the slave
device is also sending out the MSb from its shift register
(on its SDO pin) and the master device is reading this
bit and saving it as the LSb of its shift register.
After 8 bits have been shifted out, the master and slave
have exchanged register values.
If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.
Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:
• Master sends useful data and slave sends dummy
• Master sends useful data and slave sends useful
• Master sends dummy data and slave sends useful
Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the master stops sending the clock signal and it dese-
lects the slave.
Every slave device connected to the bus that has not
been selected through its slave select line must disre-
gard the clock and transmission signals and must not
transmit out any data of its own.
data.
data.
data.
 2008-2011 Microchip Technology Inc.

Related parts for PIC16F1937-E/MV