ATMEGA32-16AU Atmel, ATMEGA32-16AU Datasheet - Page 75

IC AVR MCU 32K 16MHZ 5V 44TQFP

ATMEGA32-16AU

Manufacturer Part Number
ATMEGA32-16AU
Description
IC AVR MCU 32K 16MHZ 5V 44TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
No. Of Timers
3
Rohs Compliant
Yes
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
2KB
# I/os (max)
32
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
TQFP
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA32-16AU
Manufacturer:
ATMEL
Quantity:
3 004
Part Number:
ATMEGA32-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATMEGA32-16AU
Quantity:
5 600
Company:
Part Number:
ATMEGA32-16AU
Quantity:
21 222
Part Number:
ATMEGA32-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Fast PWM Mode
2503Q–AVR–02/11
The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC0) is cleared on the compare
match between TCNT0 and OCR0, and set at BOTTOM. In inverting Compare Output mode, the
output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.
In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in
gram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare
matches between OCR0 and TCNT0.
Figure 32. Fast PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.
In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0 pin. Set-
ting the COM01:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM01:0 to 3 (See
only be visible on the port pin if the data direction for the port pin is set as output. The PWM
waveform is generated by setting (or clearing) the OC0 Register at the compare match between
OCR0 and TCNT0, and clearing (or setting) the OC0 Register at the timer clock cycle the coun-
ter is cleared (changes from MAX to BOTTOM).
The PWM frequency for the output can be calculated by the following equation:
The N variable represents the prescale factor (1, 8, 64, 256, or 1024).
The extreme values for the OCR0 Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0 is set equal to BOTTOM, the output will be
TCNTn
OCn
OCn
Period
1
Figure
2
32. The TCNT0 value is in the timing diagram shown as a histo-
3
f
OCnPWM
4
Table 40 on page
=
5
----------------- -
N 256
f
clk_I/O
6
7
81). The actual OC0 value will
ATmega32(L)
OCRn Interrupt Flag Set
OCRn Update and
TOVn Interrupt Flag Set
(COMn1:0 = 2)
(COMn1:0 = 3)
75

Related parts for ATMEGA32-16AU