ATMEGA32-16AU Atmel, ATMEGA32-16AU Datasheet - Page 13

IC AVR MCU 32K 16MHZ 5V 44TQFP

ATMEGA32-16AU

Manufacturer Part Number
ATMEGA32-16AU
Description
IC AVR MCU 32K 16MHZ 5V 44TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
No. Of Timers
3
Rohs Compliant
Yes
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
2KB
# I/os (max)
32
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
TQFP
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA32-16AU
Manufacturer:
ATMEL
Quantity:
3 004
Part Number:
ATMEGA32-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATMEGA32-16AU
Quantity:
5 600
Company:
Part Number:
ATMEGA32-16AU
Quantity:
21 222
Part Number:
ATMEGA32-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Instruction
Execution Timing
Reset and
Interrupt Handling
2503Q–AVR–02/11
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clk
chip. No internal clock division is used.
Figure 6
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.
Figure 6. The Parallel Instruction Fetches and Instruction Executions
Figure 7
operation using two register operands is executed, and the result is stored back to the destina-
tion register.
Figure 7. Single Cycle ALU Operation
The Atmel
reset vector each have a separate program vector in the program memory space. All interrupts
are assigned individual enable bits which must be written logic one together with the Global
Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Pro-
gram Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or
BLB12 are programmed. This feature improves software security. See the section
gramming” on page 256
The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
Register Operands Fetch
2nd Instruction Execute
3rd Instruction Execute
ALU Operation Execute
1st Instruction Execute
2nd Instruction Fetch
3rd Instruction Fetch
4th Instruction Fetch
1st Instruction Fetch
Total Execution Time
shows the parallel instruction fetches and instruction executions enabled by the Har-
shows the internal timing concept for the Register File. In a single clock cycle an ALU
®
AVR
Result Write Back
®
provides several different interrupt sources. These interrupts and the separate
clk
clk
for details.
CPU
CPU
CPU
, directly generated from the selected clock source for the
T1
T1
T2
T2
“Interrupts” on page
T3
T3
ATmega32(L)
44. The list also
“Memory Pro-
T4
T4
13

Related parts for ATMEGA32-16AU