ATMEGA32-16AU Atmel, ATMEGA32-16AU Datasheet - Page 251

IC AVR MCU 32K 16MHZ 5V 44TQFP

ATMEGA32-16AU

Manufacturer Part Number
ATMEGA32-16AU
Description
IC AVR MCU 32K 16MHZ 5V 44TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
No. Of Timers
3
Rohs Compliant
Yes
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
2KB
# I/os (max)
32
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
TQFP
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA32-16AU
Manufacturer:
ATMEL
Quantity:
3 004
Part Number:
ATMEGA32-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Company:
Part Number:
ATMEGA32-16AU
Quantity:
5 600
Company:
Part Number:
ATMEGA32-16AU
Quantity:
21 222
Part Number:
ATMEGA32-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Performing Page
Erase by SPM
Filling the Temporary
Buffer (Page Loading)
Performing a Page
Write
Using the SPM
Interrupt
Consideration while
Updating BLS
Prevent Reading the
RWW Section during
Self-Programming
Setting the Boot
Loader Lock Bits by
SPM
2503Q–AVR–02/11
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
Any byte address within the page address must be written to the Z-register.
Note:
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCR and execute SPM within four clock cycles after writing SPMCR. The con-
tent of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a page write operation or by writing the RWWSRE bit in
SPMCR. It is also erased after a system reset. Note that it is not possible to write more than one
time to each address without erasing the temporary buffer.
Note:
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCR is cleared. This means that the interrupt can be used instead of polling
the SPMCR Register in software. When using the SPM interrupt, the Interrupt Vectors should be
moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in
Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.
During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the Self-Programming operation. The RWWSB in the SPMCR will be set as long as the RWW
section is busy. During self-programming the Interrupt Vector table should be moved to the BLS
as described in
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See
page 253
To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCR and
execute SPM within four clock cycles after writing SPMCR. The only accessible Lock bits are the
Boot Lock bits that may prevent the Application and Boot Loader section from any software
update by the MCU.
Page Erase to the RWW section: The NRWW section can be read during the page erase.
Page Erase to the NRWW section: The CPU is halted during the operation.
Page Write to the RWW section: The NRWW section can be read during the Page Write.
Page Write to the NRWW section: The CPU is halted during the operation.
If an interrupt occurs in the timed sequence, the four cycle access cannot be guaranteed. In order
to ensure atomic operation disable interrupts before writing to SPMCSR.
If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.
for an example.
“Interrupts” on page
44, or the interrupts must be disabled. Before addressing
“Simple Assembly Code Example for a Boot Loader” on
“Interrupts” on page
ATmega32(L)
44.
251

Related parts for ATMEGA32-16AU