AT91SAM7A3-AU Atmel, AT91SAM7A3-AU Datasheet - Page 513

IC ARM7 MCU FLASH 256K 100LQFP

AT91SAM7A3-AU

Manufacturer Part Number
AT91SAM7A3-AU
Description
IC ARM7 MCU FLASH 256K 100LQFP
Manufacturer
Atmel
Series
AT91SAMr
Datasheets

Specifications of AT91SAM7A3-AU

Core Processor
ARM7
Core Size
16/32-Bit
Speed
60MHz
Connectivity
CAN, I²C, MMC, SPI, SSC, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
62
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Ram Size
32K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Controller Family/series
AT91SAM7xx
No. Of I/o's
62
Ram Memory Size
32KB
Cpu Speed
60MHz
No. Of Timers
3
Rohs Compliant
Yes
Package
100LQFP
Device Core
ARM7TDMI
Family Name
91S
Maximum Speed
60 MHz
Operating Supply Voltage
3.3 V
Data Bus Width
32 Bit
Number Of Programmable I/os
62
Interface Type
CAN/SPI/I2S/TWI/USART/USB
On-chip Adc
2(8-chx10-bit)
Number Of Timers
3
Processor Series
AT91SAMx
Core
ARM7TDMI
Data Ram Size
32 KB
Maximum Clock Frequency
60 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JTRACE-ARM-2M, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
AT91SAM-ICE, AT91-ISP, AT91SAM7A3-EK
Minimum Operating Temperature
- 40 C
Cpu Family
91S
Device Core Size
32b
Frequency (max)
60MHz
Total Internal Ram Size
32KB
# I/os (max)
62
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3V
Operating Supply Voltage (max)
3.6V
Operating Supply Voltage (min)
3V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
100
Package Type
LQFP
For Use With
AT91SAM-ICE - EMULATOR FOR AT91 ARM7/ARM9AT91SAM7A3-EK - KIT EVAL FOR AT91SAM7A3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7A3-AU
Manufacturer:
MXIC
Quantity:
1 001
Part Number:
AT91SAM7A3-AU
Manufacturer:
Atmel
Quantity:
730
Part Number:
AT91SAM7A3-AU
Manufacturer:
Atmel
Quantity:
10 000
Figure 36-14. Chaining Three Mailboxes to Receive a Buffer Split into Four Messages
36.7.3.2
6042E–ATARM–14-Dec-06
(CAN_MSRx)
(CAN_MSRx)
(CAN_MSRy)
(CAN_MSRy)
(CAN_MSRz)
(CAN_MSRz)
CAN BUS
MRDY
MRDY
MRDY
MMI
MMI
MMI
Transmission Handling
Message s1
A mailbox is in Transmit Mode once the MOT field in the CAN_MMRx register has been con-
figured. Message ID and Message Acceptance mask must be set before Receive Mode is
enabled.
After Transmit Mode is enabled, the MRDY flag in the CAN_MSR register is automatically set
until the first command is sent. When the MRDY flag is set, the software application can pre-
pare a message to be sent by writing to the CAN_MDx registers. The message is sent once
the software asks for a transfer command setting the MTCR bit and the message data length
in the CAN_MCRx register.
The MRDY flag remains at zero as long as the message has not been sent or aborted. It is
important to note that no access to the mailbox data register is allowed while the MRDY flag is
cleared. An interrupt is pending for the mailbox while the MRDY flag is set. This interrupt can
be masked depending on the mailbox flag in the CAN_IMR global register.
It is also possible to send a remote frame setting the MRTR bit instead of setting the MDLC
field. The answer to the remote frame is handled by another reception mailbox. In this case,
the device acts as a consumer but with the help of two mailboxes. It is possible to handle the
remote frame emission and the answer reception using only one mailbox configured in Con-
sumer Mode. Refer to the section
Several messages can try to win the bus arbitration in the same time. The message with the
highest priority is sent first. Several transfer request commands can be generated at the same
time by setting MBx bits in the CAN_TCR register. The priority is set in the PRIOR field of the
CAN_MMRx register. Priority 0 is the highest priority, priority 15 is the lowest priority. Thus it is
possible to use a part of the message ID to set the PRIOR field. If two mailboxes have the
same priority, the message of the mailbox with the lowest number is sent first. Thus if mailbox
Reading CAN_MDH & CAN_MDL for mailboxes x, y and z
Reading CAN_MSRx, CAN_MSRy and CAN_MSRz
Message s2
Message s3
Writing MBx MBy MBz in CAN_TCR
”Remote Frame Handling” on page
AT91SAM7A3 Preliminary
Message s4
Buffer split in 4 messages
514.
513

Related parts for AT91SAM7A3-AU