NCP5331FTR2G ON Semiconductor, NCP5331FTR2G Datasheet

IC CTLR PWM 2PH W/DRVRS 32-LQFP

NCP5331FTR2G

Manufacturer Part Number
NCP5331FTR2G
Description
IC CTLR PWM 2PH W/DRVRS 32-LQFP
Manufacturer
ON Semiconductor
Datasheet

Specifications of NCP5331FTR2G

Applications
Controller, AMD Athlon™
Voltage - Input
9 ~ 14 V
Number Of Outputs
2
Voltage - Output
5V
Operating Temperature
0°C ~ 70°C
Mounting Type
Surface Mount
Package / Case
32-LQFP
Mounting Style
SMD/SMT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
NCP5331FTR2G
NCP5331FTR2GOSTR

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
NCP5331FTR2G
Manufacturer:
ON Semiconductor
Quantity:
10 000
Part Number:
NCP5331FTR2G
Manufacturer:
ON/安森美
Quantity:
20 000
NCP5331
Two−Phase PWM
Controller with Integrated
Gate Drivers
that incorporates advanced control functions to power 64−bit AMD
Athlont processors and low voltage, high current power supplies.
Proprietary multiphase architecture guarantees balanced load−current
sharing, reduces output voltage and input current ripple, decreases
filter requirements and inductor values, and increases output current
slew rate. Traditional Enhanced V
internal PWM ramp and voltage feedback directly from V
internal PWM comparator. These features and enhancements deliver
the fastest transient response, reduce output voltage jitter, provide
greater design flexibility and portability, and minimize overall
solution cost.
programmable overcurrent shutdown timer, superior overvoltage
protection (OVP), and differential remote sensing. An innovative
overvoltage protection (OVP) scheme safeguards the CPU during
extreme situations including power up with a shorted upper MOSFET,
shorting of an upper MOSFET during normal operation, and loss of
the voltage feedback signal, COREFB+.
Features
*For additional information on our Pb−Free strategy and soldering details, please
March, 2005 − Rev. 12
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
The NCP5331 is a second−generation, two−phase, buck controller
Advanced features include adjustable power−good delay,
Reduced SMT Package Size (7 mm 7 mm)
Enhanced V
Four On−Board Gate Drivers
Internal PWM Ramps
Differential Remote Voltage Sense
Fast Feedback Pin (V
5−Bit DAC with 0.8% System Tolerance
Timed Hiccup Mode Current Limit
Power Good Output with Programmable Delay
Advanced Overvoltage Protection (OVP)
Adjustable Output Voltage Positioning
150 kHz to 600 kHz Operation Set by Resistor
“Lossless” Current Sensing through Output Inductors
Independent Current Sense Amplifiers
5.0 V, 2 mA Reference Output
Pb−Free Package is Available*
Semiconductor Components Industries, LLC, 2005
2
Control Method
FFB
)
2
t has been combined with an
CORE
1
to the
NCP5331FTR2
NCP5331FTR2G
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Device
ORDERING INFORMATION
*Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
MARKING DIAGRAMS
32
http://onsemi.com
A
WL = Wafer Lot
YY = Year
WW = Work Week
x
1
= Assembly Location
= G or G
AWLYYWWx
(Pb−Free)
LQFP−32
LQFP−32
Package
NCP5331
Publication Order Number:
CASE 873A
FT SUFFIX
LQFP−32
2000 Tape & Reel
2000 Tape & Reel
Shipping
NCP5331/D

Related parts for NCP5331FTR2G

NCP5331FTR2G Summary of contents

Page 1

... ORDERING INFORMATION Device Package Shipping NCP5331FTR2 LQFP−32 2000 Tape & Reel NCP5331FTR2G LQFP−32 2000 Tape & Reel (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ...

Page 2

NCP5331 PIN CONNECTIONS LQFP− DRP LGND 3 22 CS1 REF CS2 FFB ...

Page 3

... Recommended Components: Q1, Q4: ON Semiconductor NTD60N03 ( 6.1 mW) Q5 Q9: ON Semiconductor NTD80N02 ( 5.0 mW) L1, L2: Coiltronics CTX22−15274 or T50−8B/ #16 AWG Bifilar (1 mW) L3: Coiltronics CTX15−14771 or T30− #16 AWG Figure 1. Application Diagram 1 200 kHz for 64−Bit AMD Athlon Processor NCP5331 CCL1 CCL2 CCL ID4 ...

Page 4

MAXIMUM RATINGS* Operating Junction Temperature Lead Temperature Soldering SMD Reflow Profile (60 seconds maximum) Storage Temperature Range Package Thermal Resistance: Junction−to−Ambient, R ESD Susceptibility (Human Body Model) JEDEC Moisture Sensitivity *The maximum package power dissipation must be observed. MAXIMUM RATINGS ...

Page 5

ELECTRICAL CHARACTERISTICS 9.0 V < < 3.3 nF, R CCL1 CCL2 GATE = 1.0 mF, 0. 1.0 V; unless otherwise noted) VCC LIM Characteristic Voltage Identification DAC Voltage Identification (VID) ...

Page 6

ELECTRICAL CHARACTERISTICS (continued) 9.0 V < < 3.3 nF, R CCL1 CCL2 GATE = 1.0 mF, 0. 1.0 V; unless otherwise noted) VCC LIM Characteristic Voltage Identification DAC (continued) −SEN ...

Page 7

ELECTRICAL CHARACTERISTICS (continued) 9.0 V < < 3.3 nF, R CCL1 CCL2 GATE = 1.0 mF, 0. 1.0 V; unless otherwise noted) VCC LIM Characteristic Overcurrent Shutdown Timer (continued) Overcurrent ...

Page 8

ELECTRICAL CHARACTERISTICS (continued) 9.0 V < < 3.3 nF, R CCL1 CCL2 GATE = 1.0 mF, 0. 1.0 V; unless otherwise noted) VCC LIM Characteristic Current Sensing CS1−CS2 Input Bias ...

Page 9

PACKAGE PIN DESCRIPTION Pin No. Symbol 1 V Voltage Feedback Pin. To use Adaptive Voltage Positioning (AVP), set the light load offset voltage FB by connecting a resistor between V the offset. For no adaptive positioning connect ...

Page 10

NCP5331 Non−Overlap Non−Overlap Figure 2. Block Diagram, Control Functions http://onsemi.com 10 ...

Page 11

NCP5331 Figure 3. Block Diagram, Protection http://onsemi.com 11 ...

Page 12

V −V ID0 Figure 4. Simplified VID Pin Input Circuitry TYPICAL PERFORMANCE CHARACTERISTICS 600 550 500 450 400 350 300 250 200 150 100 (k) OSC Figure 5. Oscillator Frequency vs. R 650 600 550 ...

Page 13

TYPICAL PERFORMANCE CHARACTERISTICS 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3 Temperature ( C) Figure 8. CSA to V Gain vs. Temperature DRP 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 ...

Page 14

Overview The NCP5331 dc/dc controller utilizes an Enhanced V topology to meet requirements of low voltage, high current loads with fast transient requirements. Transient response has been improved and voltage jitter virtually eliminated by including an internal PWM ramp, connecting ...

Page 15

SWNODE Lx RLx V OUT (V ) CORE + 2 Figure 15. Enhanced V Control Employing Lossless Inductive Current Sensing and Internal Ramp with higher current, the PWM cycle will terminate earlier providing negative feedback. The NCP5331 provides a CSx ...

Page 16

SWNODE OUT Internal Ramp CSA Out w/ Exaggerated Delays COMP−Offset CSA Out + Ramp + CS REF T1 Figure 16. Open Loop Operation microseconds of a transient before the feedback loop has repositioned the COMP pin. ...

Page 17

Figure 17. Inductive Sensing Waveform During a Load Step with Fast RC Time Constant (50 ms/div) Figure 18. Hiccup Mode Operation Figure 19. Overcurrent Timer Operation NCP5331 The waveforms in Figure 17 show a simulation of the current sense signal ...

Page 18

NOTE: Using the lower MOSFETs to prevent overvoltage is not adequate if the MOSFETs are turned OFF at the UVLO threshold − V reaches 4.0 V within CORE 100 ms. Figure 20. Overvoltage Occurs with UVLO Enabled Overvoltage Protection The ...

Page 19

NOTE: The NCP5331 maintains V CORE upper MOSFET shorts during no−load operation. Figure 22. NCP5331 Prevents Overvoltage the voltage feedback signal (COREFB+) is accidentally grounded (but V is not), the error amplifier will respond CORE by ...

Page 20

During no load conditions the V DRP voltage as the V pin, so none of the V FB through the V resistor. When output current increases DRP the V pin increases proportionally and the V DRP current offsets the V ...

Page 21

V and “timing out” The current delivered to the C capacitor ( function of the R PGD PGD according to the following equation. I PGD + 0. OSC The programmed delay ...

Page 22

... Figure 29 shows device temperature rise versus switching frequency at various gate drive voltage combinations using ON Semiconductor’s NTD60N03 (Qt = 31nC at 5 the high−side MOSFet and NTD80N02 (Qt = 39nC at 7 the low−side MOSFet. Using other MOSFets will of course result in different losses, but the general conclusion will be the same ...

Page 23

Layout Guidelines With the fast rise, high output currents of microprocessor applications, parasitic inductance and resistance should be considered when laying out the power, filter and feedback signal sections of the board. Typically, a multilayer board with at least one ...

Page 24

The CS sense point should be equidistant REF between the output inductors to equalize the PCB resistance added to the current sense paths. This will insure acceptable current sharing. Also, route the CS connection away from noisy traces such ...

Page 25

For increasing current Dt INC + CORE ) For decreasing current Dt DEC + CORE ) For typical processor applications with output voltages less than half the ...

Page 26

MAX dI/dt occurs in first few PWM cycles Vi TBD 5 16MBZ1500M10X20 + Vi − ESR 13 m Input Inductor Selection The use of an inductor ...

Page 27

MOSFET and Heatsink Selection Power dissipation, package size, and thermal solution drive MOSFET selection. To adequately size the heat sink, the design must first predict the MOSFET power dissipation. Once the dissipation is known, the heat sink thermal impedance ...

Page 28

For TO−220 and TO−263 packages, standard FR−4 copper clad circuit boards will have approximate thermal resistances ( shown in the following table. SA Pad Size Single−Sided 2 2 (in / oz. Copper 0.5/323 60−65 C/W 0.75/484 ...

Page 29

MAX MAX C NOTE: The RC time constant of the current sense network is too long (slow); V and V DRP CORE Figure 35. V Tuning, RC Time Too ...

Page 30

NOTE: The value too high and the loop gain/ A1 bandwidth too low. COMP slews too slowly which results in overshoot CORE Figure 38. COMP Tuning, Bandwidth Too Low NOTE: The value of C ...

Page 31

Also, depending on the current sense points, the circuit board may add additional resistance. In general, the temperature coefficient of copper is +0.393% per C. If using a ...

Page 32

Output Inductor Selection Calculate the minimum output inductance at I according to Equation 3 with 20% inductor ripple current ( = 0.15 OUT ) @ V OUT Lo MIN + ( O,MAX @ ...

Page 33

... Coiltronics. 5. MOSFET & Heatsink Selection For the upper MOSFET we choose two (1) NTD60N03 and for the lower MOSFETs we choose two (2) NTD80N02, both are from ON Semiconductor. The following parameters are derived from the data sheets. NCP5331 Parameter 1.5 A for 1.0 ms Gate Drive Current ...

Page 34

Equation 28 is used to calculate the heat sink thermal impedances necessary to maintain less than the specified maximum junction temperatures ambient. q CNTRL SA t (120 * 55°C) 1. 1.65° 42.3°C W ...

Page 35

V ILIM + (I OUT,LIM ) LMAX ) R PCB,MAX ) @ G ILIM + ( 7. (1. 0.26 mW 1.4 Vdc Set ...

Page 36

... J SECTION AE− DETAIL Y N. American Technical Support: 800−282−9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 36 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. ...

Related keywords