ATtiny461 Automotive Atmel Corporation, ATtiny461 Automotive Datasheet - Page 53

no-image

ATtiny461 Automotive

Manufacturer Part Number
ATtiny461 Automotive
Description
Manufacturer
Atmel Corporation

Specifications of ATtiny461 Automotive

Flash (kbytes)
4 Kbytes
Pin Count
20
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.25
Eeprom (bytes)
256
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 150
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
No
Calibrated Rc Oscillator
Yes
11.1.2
11.1.3
7753F–AVR–01/11
GIMSK – General Interrupt Mask Register
GIFR – General Interrupt Flag Register
• Bit 7 – INT1: External Interrupt Request 1 Enable
When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU
Control Register (MCUCR) define whether the external interrupt is activated on rising and/or fall-
ing edge of the INT1 pin or level sensed. Activity on the pin will cause an interrupt request even
if INT1 is configured as an output. The corresponding interrupt of External Interrupt Request 1 is
executed from the INT1 Interrupt Vector.
• Bit 6 – INT0: External Interrupt Request 0 Enable
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU
Control Register (MCUCR) define whether the external interrupt is activated on rising and/or fall-
ing edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even
if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is
executed from the INT0 Interrupt Vector.
• Bit 5 – PCIE1: Pin Change Interrupt Enable
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt is enabled. Any change on any enabled PCINT7..0 or PCINT15..12 pin will
cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed
from the PCI Interrupt Vector. PCINT7..0 and PCINT15..12 pins are enabled individually by the
PCMSK0 and PCMSK1 Register.
• Bit 4 – PCIE0: Pin Change Interrupt Enable
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt is enabled. Any change on any enabled PCINT11..8 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI Interrupt
Vector. PCINT11..8 pins are enabled individually by the PCMSK1 Register.
• Bits 3..0 – Res: Reserved Bits
These bits are reserved bits in the ATtiny261/461/861 and will always read as zero.
• Bit 7– INTF1: External Interrupt Flag 1
When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set
(one). If the I-bit in SREG and the INT1 bit in GIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Bit
0x3B (0x5B)
Read/Write
Initial Value
Bit
0x3A (0x5A)
Read/Write
Initial Value
7
INT1
R/W
0
7
INT1
R/W
0
6
INTF0
R/W
0
6
INT0
R/W
0
5
PCIF
R/W
0
5
PCIE1
R/W
0
ATtiny261/ATtiny461/ATtiny861
4
R
0
4
PCIE0
R/w
0
3
R
0
3
R
0
2
R
0
2
R
0
1
R
0
1
R
0
0
R
0
0
R
0
GIFR
GIMSK
53

Related parts for ATtiny461 Automotive