ATtiny461 Automotive Atmel Corporation, ATtiny461 Automotive Datasheet - Page 24

no-image

ATtiny461 Automotive

Manufacturer Part Number
ATtiny461 Automotive
Description
Manufacturer
Atmel Corporation

Specifications of ATtiny461 Automotive

Flash (kbytes)
4 Kbytes
Pin Count
20
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.25
Eeprom (bytes)
256
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 150
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
No
Calibrated Rc Oscillator
Yes
6.5.4
6.5.5
6.5.6
24
ATtiny261/ATtiny461/ATtiny861
GPIOR2 – General Purpose I/O Register 2
GPIOR1 – General Purpose I/O Register 1
GPIOR0 – General Purpose I/O Register 0
• Bit 2 – EEMPE: EEPROM Master Program Enable
The EEMPE bit determines whether writing EEPE to one will have effect or not.
When EEMPE is set, setting EEPE within four clock cycles will program the EEPROM at the
selected address. If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles.
• Bit 1 – EEPE: EEPROM Program Enable
The EEPROM Program Enable Signal EEPE is the programming enable signal to the EEPROM.
When EEPE is written, the EEPROM will be programmed according to the EEPMn bits setting.
The EEMPE bit must be written to one before a logical one is written to EEPE, otherwise no
EEPROM write takes place. When the write access time has elapsed, the EEPE bit is cleared by
hardware. When EEPE has been set, the CPU is halted for two cycles before the next instruction
is executed.
• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal – EERE – is the read strobe to the EEPROM. When the cor-
rect address is set up in the EEAR Register, the EERE bit must be written to one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed. The user should poll the EEPE bit before starting the read opera-
tion. If a write operation is in progress, it is neither possible to read the EEPROM, nor to change
the EEAR Register.
Bit
0x0C (0x2C)
Read/Write
Initial Value
Bit
0x0B (0x2B)
Read/Write
Initial Value
Bit
0x0A (0x2A)
Read/Write
Initial Value
MSB
MSB
MSB
R/W
R/W
R/W
7
0
7
0
7
0
R/W
R/W
R/W
6
0
6
0
6
0
R/W
R/W
R/W
5
0
5
0
5
0
R/W
R/W
R/W
4
0
4
0
4
0
R/W
R/W
R/W
3
0
3
0
3
0
R/W
R/W
R/W
2
0
2
0
2
0
R/W
R/W
R/W
1
0
1
0
1
0
LSB
R/W
LSB
R/W
LSB
R/W
0
0
0
0
0
0
7753F–AVR–01/11
GPIOR0
GPIOR2
GPIOR1

Related parts for ATtiny461 Automotive