ATmega162 Atmel Corporation, ATmega162 Datasheet - Page 27

no-image

ATmega162

Manufacturer Part Number
ATmega162
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega162

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
35
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
6
Input Capture Channels
2
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega162-16AI
Manufacturer:
MIT
Quantity:
170
Part Number:
ATmega162-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16AI
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATmega162-16AI
Manufacturer:
ATMEL
Quantity:
20 000
Part Number:
ATmega162-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16AU
Manufacturer:
AVX
Quantity:
600 000
Part Number:
ATmega162-16AU
Manufacturer:
ATMEL
Quantity:
1 600
Part Number:
ATmega162-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Part Number:
ATmega162-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16MU
Manufacturer:
QFN
Quantity:
20 000
Part Number:
ATmega16216AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega162V-8PU
Manufacturer:
IDT
Quantity:
74
Address Latch
Requirements
2513K–AVR–07/09
The control bits for the External Memory Interface are located in three registers, the MCU Con-
trol Register – MCUCR, the Extended MCU Control Register – EMCUCR, and the Special
Function IO Register – SFIOR.
When the XMEM interface is enabled, it will override the settings in the Data Direction registers
corresponding to the ports dedicated to the interface. For details about this port override, see the
alternate functions in section
whether an access is internal or external. If the access is external, the XMEM interface will out-
put address, data, and the control signals on the ports according to
the wave forms without wait-states). When ALE goes from high to low, there is a valid address
on AD7:0. ALE is low during a data transfer. When the XMEM interface is enabled, also an inter-
nal access will cause activity on address-, data- and ALE ports, but the RD and WR strobes will
not toggle during internal access. When the External Memory Interface is disabled, the normal
pin and data direction settings are used. Note that when the XMEM interface is disabled, the
address space above the internal SRAM boundary is not mapped into the internal SRAM.
12
“74x573” or equivalent) which is transparent when G is high.
Due to the high-speed operation of the XRAM interface, the address latch must be selected with
care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V. When operating at condi-
tions above these frequencies, the typical old style 74HC series latch becomes inadequate. The
external memory interface is designed in compliance to the 74AHC series latch. However, most
latches can be used as long they comply with the main timing parameters. The main parameters
for the address latch are:
The external memory interface is designed to guaranty minimum address hold time after G is
asserted low of t
D to Q propagation delay (t
requirement of the external component. The data setup time before G low (t
address valid to ALE low (t
Figure 12. External SRAM Connected to the AVR
illustrates how to connect an external SRAM to the AVR using an octal latch (typically
D to Q propagation delay (t
Data setup time before G low (t
Data (address) hold time after G low (
h
= 5 ns (refer to t
AVR
AD7:0
A15:8
AVLLC
pd
ALE
WR
RD
) must be taken into consideration when calculating the access time
pd
“I/O-Ports” on page
) minus PCB wiring delay (dependent on the capacitive load).
).
LAXX_LD
su
).
/t
th
LLAXX_ST
).
D
G
in
Q
Table 114
63. The XMEM interface will autodetect
to
D[7:0]
A[15:8]
A[7:0]
RD
WR
SRAM
Table 121 on page
Figure 13
ATmega162/V
su
) must not exceed
(this figure shows
272). The
Figure
27

Related parts for ATmega162