ATmega128A Atmel Corporation, ATmega128A Datasheet - Page 337

no-image

ATmega128A

Manufacturer Part Number
ATmega128A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega128A

Flash (kbytes)
128 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
4096
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega128A XC6SLXFGG484CTV BCM7366ZBK W2SG0008I-T
Manufacturer:
XILINX
0
Part Number:
ATmega128A-16AU
Manufacturer:
ATMEL
Quantity:
6
Part Number:
ATmega128A-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATmega128A-16AU
Quantity:
100
Part Number:
ATmega128A-16MU
Quantity:
10
Part Number:
ATmega128A-AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega128A-ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega128A-AU
Manufacturer:
ATMEL
Quantity:
9 000
Part Number:
ATmega128A-AU
Manufacturer:
ATMEL
Quantity:
3 480
Part Number:
ATmega128A-AU
Manufacturer:
ATMEL
Quantity:
3 512
Part Number:
ATmega128A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega128A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATmega128A-AU
Quantity:
6 944
Part Number:
ATmega128A-AUR
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATmega128A-AUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
28. Typical Characteristics
28.1
8151H–AVR–02/11
Active Supply Current
The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.
The power consumption in Power-down mode is independent of clock selection.
The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.
The current drawn from capacitive loaded pins may be estimated (for one pin) as C
C
The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.
The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.
Figure 28-1. Active Supply Current vs. Low Frequency (0.1MHz - 1.0MHz)
L
= load capacitance, V
1.5
0.5
2
1
0
0
0.1
CC
0.2
= operating voltage and f = average switching frequency of I/O pin.
0.3
0.4
Frequency (MHz)
0.5
0.6
0.7
0.8
ATmega128A
0.9
1
5.5 V
5.0 V
4.5 V
4.0 V
3.3 V
2.7 V
L
*
V
CC
*f where
337

Related parts for ATmega128A