PIC24FJ64GB004-I/ML Microchip Technology, PIC24FJ64GB004-I/ML Datasheet - Page 131

IC, 16BIT MCU, PIC24F, 32MHZ, QFN-44

PIC24FJ64GB004-I/ML

Manufacturer Part Number
PIC24FJ64GB004-I/ML
Description
IC, 16BIT MCU, PIC24F, 32MHZ, QFN-44
Manufacturer
Microchip Technology
Series
PIC® XLP™ 24Fr

Specifications of PIC24FJ64GB004-I/ML

Controller Family/series
PIC24
Ram Memory Size
8KB
Cpu Speed
32MHz
No. Of Timers
5
Interface
I2C, LIN, SPI, UART, USB
No. Of Pwm Channels
5
Core Size
16 Bit
Program Memory Size
64 KB
Core Processor
PIC
Speed
32MHz
Connectivity
I²C, IrDA, SPI, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
33
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-QFN
Embedded Interface Type
I2C, LIN, SPI, UART, USB
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
876-1004 - PIC24 BREAKOUT BOARD
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC24FJ64GB004-I/ML
Manufacturer:
MICROCHIP
Quantity:
1 200
10.4.5
The ability to control Peripheral Pin Selection intro-
duces several considerations into application design
that could be overlooked. This is particularly true for
several common peripherals that are available only as
remappable peripherals.
The main consideration is that the Peripheral Pin
Selects are not available on default pins in the device’s
default (Reset) state. Since all RPINRx registers reset
to ‘11111’ and all RPORx registers reset to ‘00000’, all
Peripheral Pin Select inputs are tied to V
Peripheral Pin Select outputs are disconnected.
This situation requires the user to initialize the device
with the proper peripheral configuration before any
other application code is executed. Since the IOLOCK
bit resets in the unlocked state, it is not necessary to
execute the unlock sequence after the device has
come out of Reset. For application safety, however, it is
best to set IOLOCK and lock the configuration after
writing to the control registers.
Because the unlock sequence is timing-critical, it must
be executed as an assembly language routine in the
same manner as changes to the oscillator configura-
tion. If the bulk of the application is written in C or
another high-level language, the unlock sequence
should be performed by writing in-line assembly.
Choosing the configuration requires the review of all
Peripheral Pin Selects and their pin assignments,
especially those that will not be used in the application.
In all cases, unused pin-selectable peripherals should
be disabled completely. Unused peripherals should
have their inputs assigned to an unused RPn pin
function. I/O pins with unused RPn functions should be
configured with the null peripheral output.
The assignment of a peripheral to a particular pin does
not automatically perform any other configuration of the
pin’s I/O circuitry. In theory, this means adding a
pin-selectable output to a pin may mean inadvertently
driving an existing peripheral input when the output is
driven. Users must be familiar with the behavior of
other fixed peripherals that share a remappable pin and
know when to enable or disable them. To be safe, fixed
digital peripherals that share the same pin should be
disabled when not in use.
© 2009 Microchip Technology Inc.
Note:
CONSIDERATIONS FOR
PERIPHERAL PIN SELECTION
RP31 does not have to exist on a device
for the registers to be reset to it, or for
peripheral pin outputs to be tied to it.
SS
and all
PIC24FJ64GB004 FAMILY
Preliminary
Along these lines, configuring a remappable pin for a
specific peripheral does not automatically turn that
feature on. The peripheral must be specifically
configured for operation and enabled, as if it were tied to
a fixed pin. Where this happens in the application code
(immediately following device Reset and peripheral
configuration or inside the main application routine)
depends on the peripheral and its use in the application.
A final consideration is that Peripheral Pin Select func-
tions neither override analog inputs, nor reconfigure
pins with analog functions for digital I/O. If a pin is
configured as an analog input on device Reset, it must
be explicitly reconfigured as digital I/O when used with
a Peripheral Pin Select.
Example 10-2 shows a configuration for bidirectional
communication with flow control using UART1. The
following input and output functions are used:
• Input Functions: U1RX, U1CTS
• Output Functions: U1TX, U1RTS
EXAMPLE 10-2:
// Unlock Registers
asm volatile
// Configure Input Functions (Table 9-1))
// Configure Output Functions (Table 9-2)
// Lock Registers
asm volatile
// Assign U1RX To Pin RP0
RPINR18bits.U1RXR = 0;
// Assign U1CTS To Pin RP1
RPINR18bits.U1CTSR = 1;
// Assign U1TX To Pin RP2
RPOR1bits.RP2R = 3;
// Assign U1RTS To Pin RP3
RPOR1bits.RP3R = 4;
("MOV
"MOV
"MOV
"MOV.b w2, [w1]\n"
"MOV.b w3, [w1]\n"
"BCLR
("MOV
CONFIGURING UART1
INPUT AND OUTPUT
FUNCTIONS
"MOV
"MOV
"MOV.b w2, [w1]\n"
"MOV.b w3, [w1]\n"
"BSET
#OSCCON, w1\n"
#0x46, w2\n"
#0x57, w3\n"
OSCCON,#6");
#OSCCON, w1\n"
#0x46, w2\n"
#0x57, w3\n"
OSCCON, #6" );
DS39940C-page 129

Related parts for PIC24FJ64GB004-I/ML