MC9S08SH16MTG Freescale Semiconductor, MC9S08SH16MTG Datasheet - Page 63

no-image

MC9S08SH16MTG

Manufacturer Part Number
MC9S08SH16MTG
Description
MCU 8BIT 16K FLASH 16-TSSOP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08SH16MTG

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, LIN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
13
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
16-TSSOP
Core
S08
Processor Series
MC9S08Sxx
Data Bus Width
8 bit
Maximum Clock Frequency
40 MHz
Data Ram Size
1 KB
On-chip Adc
Yes
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Operating Temperature Range
- 40 C to + 125 C
Mounting Style
SMD/SMT
A/d Bit Size
10 bit
A/d Channels Available
8
Height
1.05 mm
Interface Type
SCI, SPI, I2C
Length
5 mm
Maximum Operating Temperature
+ 125 C
Minimum Operating Temperature
- 40 C
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
4.4 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
The status flag corresponding to the interrupt source must be acknowledged (cleared) before returning
from the ISR. Typically, the flag is cleared at the beginning of the ISR so that if another interrupt is
generated by this same source, it will be registered so it can be serviced after completion of the current ISR.
5.5.2
External interrupts are managed by the IRQ status and control register, IRQSC. When the IRQ function is
enabled, synchronous logic monitors the pin for edge-only or edge-and-level events. When the MCU is in
stop mode and system clocks are shut down, a separate asynchronous path is used so the IRQ (if enabled)
can wake the MCU.
5.5.2.1
The IRQ pin enable (IRQPE) control bit in IRQSC must be 1 in order for the IRQ pin to act as the interrupt
request (IRQ) input. As an IRQ input, the user can choose the polarity of edges or levels detected
(IRQEDG), whether the pin detects edges-only or edges and levels (IRQMOD), and whether an event
causes an interrupt or only sets the IRQF flag which can be polled by software.
The IRQ pin, when enabled, defaults to use an internal pull device (IRQPDD = 0), the device is a pull-up
or pull-down depending on the polarity chosen. If the user desires to use an external pull-up or pull-down,
the IRQPDD can be written to a 1 to turn off the internal device.
BIH and BIL instructions may be used to detect the level on the IRQ pin when the pin is configured to act
as the IRQ input.
5.5.2.2
The IRQMOD control bit reconfigures the detection logic so it detects edge events and pin levels. In the
edge and level detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ
pin changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be
cleared) as long as the IRQ pin remains at the asserted level.
5.5.3
Table 5-2
bottom of the table. The high-order byte of the address for the interrupt service routine is located at the
first address in the vector address column, and the low-order byte of the address for the interrupt service
routine is located at the next higher address.
Freescale Semiconductor
provides a summary of all interrupt sources. Higher-priority sources are located toward the
External Interrupt Request Pin (IRQ)
Interrupt Vectors, Sources, and Local Masks
Pin Configuration Options
Edge and Level Sensitivity
This pin does not contain a clamp diode to V
above V
The voltage measured on the internally pulled up IRQ pin will not be pulled
to V
IRQ pin is required to drive to a V
DD
. The internal gates connected to this pin are pulled to V
DD
.
MC9S08SH32 Series Data Sheet, Rev. 2
PRELIMINARY
DD
NOTE
level an external pullup should be used.
Chapter 5 Resets, Interrupts, and General System Control
DD
and should not be driven
DD
. If the
63

Related parts for MC9S08SH16MTG