ATTINY24A-SSUR Atmel, ATTINY24A-SSUR Datasheet - Page 91

no-image

ATTINY24A-SSUR

Manufacturer Part Number
ATTINY24A-SSUR
Description
MCU AVR 2KB FLASH 20MHZ 14SOIC
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheet

Specifications of ATTINY24A-SSUR

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
USI
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
12
Program Memory Size
2KB (1K x 16)
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Package
14SOIC W
Device Core
AVR
Family Name
ATtiny
Maximum Speed
20 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
12
Interface Type
SPI/USI
On-chip Adc
8-chx10-bit
Number Of Timers
2
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY24A-SSUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
8183C–AVR–03/11
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation
A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.
Figure 12-4 on page 91
register and bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indi-
cates Output Compare unit (A/B). The elements of the block diagram that are not directly a part
of the Output Compare unit are gray shaded.
Figure 12-4.
The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.
The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
Output Compare Unit, Block Diagram
OCRnxH Buf. (8-bit)
shows a block diagram of the Output Compare unit. The small “n” in the
OCRnxH (8-bit)
(“Modes of Operation” on page
BOTTOM
OCRnx
TEMP (8-bit)
TOP
OCRnx (16-bit Register)
Buffer (16-bit Register)
OCRnxL Buf. (8-bit)
OCRnxL (8-bit)
DATA BUS
Waveform Generator
WGMn[3:0]
=
(16-bit Comparator )
(8-bit)
94).
COMnx[1:0]
ATtiny24A/44A/84A
TCNTnH (8-bit)
OCFnx (Int.Req.)
TCNTn (16-bit Counter)
TCNTnL (8-bit)
OCnx
91

Related parts for ATTINY24A-SSUR