ATTINY24A-SSUR Atmel, ATTINY24A-SSUR Datasheet - Page 44

no-image

ATTINY24A-SSUR

Manufacturer Part Number
ATTINY24A-SSUR
Description
MCU AVR 2KB FLASH 20MHZ 14SOIC
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheet

Specifications of ATTINY24A-SSUR

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
USI
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
12
Program Memory Size
2KB (1K x 16)
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Package
14SOIC W
Device Core
AVR
Family Name
ATtiny
Maximum Speed
20 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
12
Interface Type
SPI/USI
On-chip Adc
8-chx10-bit
Number Of Timers
2
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY24A-SSUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
8.5
8.5.1
8.5.2
44
Register Description
ATtiny24A/44A/84A
MCUSR – MCU Status Register
WDTCSR – Watchdog Timer Control and Status Register
The MCU Status Register provides information on which reset source caused an MCU Reset.
• Bits 7:4 – Res: Reserved Bits
These bits are reserved bits in the ATtiny24A/44A/84A and will always read as zero.
• Bit 3 – WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.
• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.
To make use of the Reset Flags to identify a reset condition, the user should read and then reset
the MCUSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the Reset Flags.
• Bit 7 – WDIF: Watchdog Timeout Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.
• Bit 6 – WDIE: Watchdog Timeout Interrupt Enable
When this bit is written to one, WDE is cleared, and the I-bit in the Status Register is set, the
Watchdog Time-out Interrupt is enabled. In this mode the corresponding interrupt is executed
instead of a reset if a timeout in the Watchdog Timer occurs.
If WDE is set, WDIE is automatically cleared by hardware when a time-out occurs. This is useful
for keeping the Watchdog Reset security while using the interrupt. After the WDIE bit is cleared,
Bit
0x34 (0x54)
Read/Write
Initial Value
Bit
0x21 (0x41)
Read/Write
Initial Value
WDIF
R/W
7
0
R
7
0
WDIE
R/W
6
0
R
6
0
WDP3
R/W
5
0
R
5
0
WDCE
R/W
4
0
R
4
0
WDE
WDRF
R/W
R/W
X
3
3
WDP2
R/W
BORF
See Bit Description
R/W
2
0
2
WDP1
R/W
EXTRF
1
0
R/W
1
WDP0
R/W
PORF
0
0
R/W
0
8183C–AVR–03/11
WDTCSR
MCUSR

Related parts for ATTINY24A-SSUR