ATTINY24A-SSUR Atmel, ATTINY24A-SSUR Datasheet - Page 19

no-image

ATTINY24A-SSUR

Manufacturer Part Number
ATTINY24A-SSUR
Description
MCU AVR 2KB FLASH 20MHZ 14SOIC
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheet

Specifications of ATTINY24A-SSUR

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
USI
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
12
Program Memory Size
2KB (1K x 16)
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Package
14SOIC W
Device Core
AVR
Family Name
ATtiny
Maximum Speed
20 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
12
Interface Type
SPI/USI
On-chip Adc
8-chx10-bit
Number Of Timers
2
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY24A-SSUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
5.3.7
8183C–AVR–03/11
Preventing EEPROM Corruption
The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.
Note:
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V
Assembly Code Example
C Code Example
EEPROM_read:
unsigned char EEPROM_read(unsigned int ucAddress)
{
}
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM_read
; Set up address (r18:r17) in address registers
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in
ret
/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
/* Set up address register */
EEAR = ucAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;
See
;
“Code Examples” on page
r16, EEDR
CC
, the EEPROM data can be corrupted because the supply voltage is
6.
ATtiny24A/44A/84A
CC
reset protection circuit can
19

Related parts for ATTINY24A-SSUR