PIC16F76-I/ML Microchip Technology, PIC16F76-I/ML Datasheet - Page 477

IC MCU FLASH 8KX14 A/D 28QFN

PIC16F76-I/ML

Manufacturer Part Number
PIC16F76-I/ML
Description
IC MCU FLASH 8KX14 A/D 28QFN
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F76-I/ML

Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
14KB (8K x 14)
Program Memory Type
FLASH
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 5x8b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
368 B
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
22
Number Of Timers
3 bit
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
ICE2000, DM163022
Minimum Operating Temperature
- 40 C
On-chip Adc
5 bit
For Use With
XLT28QFN4 - SOCKET TRANS ICE 28QFN W/CABLEAC164322 - MODULE SOCKET MPLAB PM3 28/44QFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
PIC16F76-I/MLR
PIC16F76-I/MLR
PIC16F76I/ML
1997 Microchip Technology Inc.
Note:
COM0 - SEGx [ON] =
COM0 - SEGx [OFF] =
V
V
D = V
Refer to Figure 25-6
RMS
RMS
V
[ON] =
[OFF] =
RMS
RMS
[ON]
[OFF]
The next example is for Figure 25-6 which is a 1/4 MUX, 1/3 BIAS waveform. For this example,
the values 3, 2, 1 and 0 will be assigned to V
DC voltage, RMS voltage and discrimination ratio calculations are shown in
Example 25-4:
As shown in these examples, static displays have excellent contrast. The higher the multiplex
ratio of the LCD, the lower the discrimination ratio, and therefore, the lower the contrast of the
display.
Table 25-5
and BIAS.
As the multiplex of the LCD panel increases, the discrimination ratio decreases. The contrast of
the panel will also decrease, so to provide better contrast the LCD voltages must be increased
to provide greater separation between each level.
Table 25-5: Discrimination Ratio vs. MUX and Bias
1/2 MUX
1/3 MUX
1/4 MUX
STATIC
V
V
= 3
shows the V
1
3 - 3 + 1 - 1 + 1 - 1 + 1 - 1
1 - 1 - 1 + 1 - 1 + 1 - 1 + 1
(1)
(3)
2
2
V
V
Discrimination Ratio Calculation 1/4 MUX
+ (-1)
+ (-3)
0.333
0.333
0.333
V
= 1.732
OFF
0
OFF
2
2
+ (-1)
+ (1)
, V
ON
2
1/3 BIAS
2
+ (-1)
and discrimination ratios of the various combinations of MUX
0.745
0.638
0.577
+ (1)
V
1
ON
2
2
8
8
+ (-1)
+ (1)
3
2
2.236
1.915
1.732
, V
2
+ (-1)
D
+ (1)
2
, V
V
V
DC
DC
1
Section 25. LCD
2
2
, and V
+ (-1)
= 0
= 0
+ (1)
2
2
0
+ (-1)
+ (1)
respectively. The frame equation,
2
2
=
DS31025A-page 25-19
=
Example
3
V
V
25-4.
25

Related parts for PIC16F76-I/ML