ATtiny48 Atmel Corporation, ATtiny48 Datasheet - Page 138

no-image

ATtiny48

Manufacturer Part Number
ATtiny48
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny48

Flash (kbytes)
4 Kbytes
Pin Count
32
Max. Operating Frequency
12 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
28
Ext Interrupts
28
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.25
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny48-10AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-12AU
Manufacturer:
ATMEL
Quantity:
3 046
Part Number:
ATtiny48-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny48-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATtiny48-AU
Quantity:
15 000
Company:
Part Number:
ATtiny48-AU
Quantity:
35
Part Number:
ATtiny48-AUR
Manufacturer:
Atmel
Quantity:
5 975
Part Number:
ATtiny48-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny48-MU
Manufacturer:
Atmel
Quantity:
5
Part Number:
ATtiny48-MU
Manufacturer:
LT
Quantity:
416
Part Number:
ATtiny48-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-MUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-PU
Manufacturer:
ATMEL
Quantity:
5 530
Figure 15-10. Interfacing the Application to the TWI in a Typical Transmission
138
writes to TWCR to
TWI bus
transmission of
ATtiny48/88
1. Application
START condition sent
Status code indicates
START
initiate
2. TWINT set.
START
TWDR, and loads appropriate control
3. Check TWSR to see if START was
sent. Application loads SLA+W into
signals into TWCR, makin sure that
1. The first step in a TWI transmission is to transmit a START condition. This is done by
2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
3. The application software should now examine the value of TWSR, to make sure that the
4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
5. The application software should now examine the value of TWSR, to make sure that the
and TWSTA is written to zero.
TWINT is written to one,
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the START
condition.
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.
START condition was successfully transmitted. If TWSR indicates otherwise, the appli-
cation software might take some special action, like calling an error routine. Assuming
that the status code is as expected, the application must load SLA+W into TWDR.
Remember that TWDR is used both for address and data. After TWDR has been
loaded with the desired SLA+W, a specific value must be written to TWCR, instructing
the TWI hardware to transmit the SLA+W present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written.
Writing a one to TWINT clears the flag. The TWI will not start any operation as long as
the TWINT bit in TWCR is set. Immediately after the application has cleared TWINT,
the TWI will initiate transmission of the address packet.
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a Slave acknowledged the
packet or not.
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must load a data packet into TWDR. Subsequently, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the data packet
present in TWDR. Which value to write is described later on. However, it is important
SLA+W
Status code indicates
SLA+W sent, ACK
4. TWINT set.
received
A
Application loads data into TWDR, and
5. Check TWSR to see if SLA+W was
loads appropriate control signals into
TWCR, making sure that TWINT is
sent and ACK received.
written to one
Data
data sent, ACK received
Status code indicates
6. TWINT set.
A
making sure that TWINT is written to one
7. Check TWSR to see if data was sent
Application loads appropriate control
signals to send STOP into TWCR,
STOP
and ACK received.
TWINT set
8008H–AVR–04/11
Indicates

Related parts for ATtiny48