ATMEGA165-16AI Atmel, ATMEGA165-16AI Datasheet - Page 136

IC AVR MCU 16K 16MHZ 64TQFP

ATMEGA165-16AI

Manufacturer Part Number
ATMEGA165-16AI
Description
IC AVR MCU 16K 16MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA165-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA165-16AI
Manufacturer:
Atmel
Quantity:
10 000
Timer/Counter2 Interrupt
Mask Register – TIMSK2
2573G–AVR–07/09
• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable
When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is
set in the Timer/Counter 2 Interrupt Flag Register – TIFR2.
• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the
Timer/Counter2 Interrupt Flag Register – TIFR2.
Bit
Read/Write
Initial Value
Description of wake up from Power-save or ADC Noise Reduction mode when the
timer is clocked asynchronously: When the interrupt condition is met, the wake up
process is started on the following cycle of the timer clock, that is, the timer is
always advanced by at least one before the processor can read the counter value.
After wake-up, the MCU is halted for four cycles, it executes the interrupt routine,
and resumes execution from the instruction following SLEEP.
Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal I/O clock
domain. Synchronization takes place for every rising TOSC1 edge. When waking up
from Power-save mode, and the I/O clock (clk
read as the previous value (before entering sleep) until the next rising TOSC1 edge.
The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for
reading TCNT2 is thus as follows:
1.Write any value to either of the registers OCR2A or TCCR2A.
2.Wait for the corresponding Update Busy Flag to be cleared.
3.Read TCNT2.
During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is
therefore advanced by at least one before the processor can read the timer value
causing the setting of the Interrupt Flag. The Output Compare pin is changed on the
timer clock and is not synchronized to the processor clock.
R
7
0
R
6
0
R
5
0
R
4
0
3
R
0
I/O
) again becomes active, TCNT2 will
R
2
0
ATmega165/V
OCIE2A
R/W
1
0
TOIE2
R/W
0
0
TIMSK2
136

Related parts for ATMEGA165-16AI