DSPIC30F2010-20I/SP Microchip Technology, DSPIC30F2010-20I/SP Datasheet - Page 131

IC DSPIC MCU/DSP 12K 28DIP

DSPIC30F2010-20I/SP

Manufacturer Part Number
DSPIC30F2010-20I/SP
Description
IC DSPIC MCU/DSP 12K 28DIP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F2010-20I/SP

Program Memory Type
FLASH
Program Memory Size
12KB (4K x 24)
Package / Case
28-DIP (0.300", 7.62mm)
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
20
Eeprom Size
1K x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
20
Data Ram Size
512 B
Operating Supply Voltage
2.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Data Rom Size
1024 B
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300027, DM330011, DM300018, DM183021
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F2010-20I/SPG
DSPIC30F201020ISG
DSPIC30F201020ISG
DSPIC30F201020ISP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F2010-20I/SP
Manufacturer:
MAXIM
Quantity:
6
Part Number:
DSPIC30F2010-20I/SP
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
19.4
19.4.1
The primary function of the Watchdog Timer (WDT) is
to reset the processor in the event of a software mal-
function. The WDT is a free running timer, which runs
off an on-chip RC oscillator, requiring no external com-
ponent. Therefore, the WDT timer will continue to oper-
ate even if the main processor clock (e.g., the crystal
oscillator) fails.
19.4.2
The Watchdog Timer can be “Enabled” or “Disabled”
only through a configuration bit (FWDTEN) in the
configuration register FWDT.
Setting FWDTEN = 1 enables the Watchdog Timer.
The enabling is done when programming the device.
By default, after chip-erase, FWDTEN bit = 1. Any
device
dsPIC30F devices allows programming of this and
other configuration bits.
If enabled, the WDT will increment until it overflows or
“times out”. A WDT time-out will force a device Reset
(except during Sleep). To prevent a WDT time-out, the
user must clear the Watchdog Timer using a CLRWDT
instruction.
If a WDT times out during Sleep, the device will wake-
up. The WDTO bit in the RCON register will be cleared
to indicate a wake-up resulting from a WDT time-out.
Setting FWDTEN = 0 allows user software to enable/
disable the Watchdog Timer via the SWDTEN
(RCON<5>) control bit.
19.5
There are two power saving states that can be entered
through the execution of a special instruction, PWRSAV.
These are: Sleep and Idle.
The format of the PWRSAV instruction is as follows:
PWRSAV <parameter>, where ‘parameter’ defines
Idle or Sleep mode.
19.5.1
In Sleep mode, the clock to the CPU and peripherals is
shutdown. If an on-chip oscillator is being used, it is
shutdown.
The fail-safe clock monitor is not functional during
Sleep, since there is no clock to monitor. However,
LPRC clock remains active if WDT is operational during
Sleep.
The Brown-out protection circuit and the Low Voltage
Detect circuit, if enabled, will remain functional during
Sleep.
 2004 Microchip Technology Inc.
Power Saving Modes
programmer
Watchdog Timer (WDT)
WATCHDOG TIMER OPERATION
ENABLING AND DISABLING THE
WDT
SLEEP MODE
capable
of
programming
Preliminary
The processor wakes up from Sleep if at least one of
the following conditions has occurred:
• any interrupt that is individually enabled and
• any Reset (POR, BOR and MCLR)
• WDT time-out
On waking up from Sleep mode, the processor will
restart the same clock that was active prior to entry
into Sleep mode. When clock switching is enabled,
bits COSC<1:0> will determine the oscillator source
that will be used on wake-up. If clock switch is
disabled, then there is only one system clock.
If the clock source is an oscillator, the clock to the
device will be held off until OST times out (indicating a
stable oscillator). If PLL is used, the system clock is
held off until LOCK = 1 (indicating that the PLL is sta-
ble). In either case, T
applied.
If EC, FRC, LPRC or EXTRC oscillators are used, then
a delay of T
delay possible on wake-up from Sleep.
Moreover, if LP oscillator was active during Sleep, and
LP is the oscillator used on wake-up, then the start-up
delay will be equal to T
timer delay are not applied. In order to have the small-
est possible start-up delay when waking up from Sleep,
one of these faster wake-up options should be selected
before entering Sleep.
Any interrupt that is individually enabled (using the cor-
responding IE bit) and meets the prevailing priority
level will be able to wake-up the processor. The proces-
sor will process the interrupt and branch to the ISR.
The Sleep status bit in RCON register is set upon
wake-up.
meets the required priority level
Note:
Note:
POR
If a POR or BOR occurred, the selection of
the oscillator is based on the FOS<1:0>
and FPR<3:0> configuration bits.
In spite of various delays applied (T
T
(and PLL) may not be active at the end of
the time-out (e.g., for low frequency crys-
tals. In such cases), if FSCM is enabled,
then the device will detect this as a clock
failure and process the Clock Failure Trap,
the FRC oscillator will be enabled, and the
user will have to re-enable the crystal
oscillator. If FSCM is not enabled, then the
device will simply suspend execution of
code until the clock is stable, and will
remain in Sleep until the oscillator clock
has started.
LOCK
(~ 10 µs) is applied. This is the smallest
dsPIC30F2010
and T
POR
, T
PWRT
POR
LOCK
. PWRT delay and OST
), the crystal oscillator
and T
DS70118D-page 129
PWRT
delays are
POR
,

Related parts for DSPIC30F2010-20I/SP