ATMEGA1284P-AU Atmel, ATMEGA1284P-AU Datasheet - Page 217

MCU AVR 128K ISP FLASH 44-TQFP

ATMEGA1284P-AU

Manufacturer Part Number
ATMEGA1284P-AU
Description
MCU AVR 128K ISP FLASH 44-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA1284P-AU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
16 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATAVRRAVEN, ATAVRRZUSBSTICK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
44TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
20 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Rom Size
4 KB
Height
1.05 mm
Length
10.1 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
1.8 V
Width
10.1 mm
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
4KB
Ram Memory Size
16KB
Cpu Speed
20MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600 - DEV KIT FOR AVR/AVR32
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA1284P-AU
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATMEGA1284P-AU
Manufacturer:
ATMEL
Quantity:
748
Part Number:
ATMEGA1284P-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA1284P-AU
Manufacturer:
Microchip
Quantity:
500
Part Number:
ATMEGA1284P-AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATMEGA1284P-AU
Quantity:
6 817
Company:
Part Number:
ATMEGA1284P-AU
Quantity:
6 797
Part Number:
ATMEGA1284P-AUR
Manufacturer:
Atmel
Quantity:
10 000
8272A–AVR–01/10
2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
3. The application software should now examine the value of TWSR, to make sure that the
4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
5. The application software should now examine the value of TWSR, to make sure that the
6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR
7. The application software should now examine the value of TWSR, to make sure that the
Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:
• When the TWI has finished an operation and expects application response, the TWINT Flag is
• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for
164A/164PA/324A/324PA/644A/644PA/1284/1284P
set. The SCL line is pulled low until TWINT is cleared.
the next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted
in the next bus cycle.
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet or
not.
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a Slave acknowledged the packet or not.
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.
217

Related parts for ATMEGA1284P-AU