CY7C924ADX-AC Cypress Semiconductor Corp, CY7C924ADX-AC Datasheet - Page 49

no-image

CY7C924ADX-AC

Manufacturer Part Number
CY7C924ADX-AC
Description
Manufacturer
Cypress Semiconductor Corp
Datasheet

Specifications of CY7C924ADX-AC

Number Of Transceivers
1
Data Rate
622Mbps
Operating Supply Voltage (typ)
5V
Supply Current (max)
250mA
Screening Level
Commercial
Pin Count
100
Mounting
Surface Mount
Package Type
TQFP
Operating Supply Voltage (min)
4.5V
Operating Supply Voltage (max)
5.5V
Operating Temperature (min)
0C
Operating Temperature (max)
70C
Lead Free Status / RoHS Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY7C924ADX-AC
Manufacturer:
CY
Quantity:
1 383
Part Number:
CY7C924ADX-AC
Manufacturer:
CYPRESS
Quantity:
745
Part Number:
CY7C924ADX-AC
Manufacturer:
CY
Quantity:
1 000
Part Number:
CY7C924ADX-AC
Manufacturer:
CYPRESS/赛普拉斯
Quantity:
20 000
Document #: 38-02008 Rev. *E
Notation Conventions
The documentation for the 8B/10B Transmission Code uses
letter notation for the bits in an 8-bit byte. Fibre Channel
Standard notation uses a bit notation of A, B, C, D, E, F, G, H
for the 8-bit byte for the raw 8-bit data, and the letters a, b, c,
d, e, i, f, g, h, j for encoded 10-bit data. There is a correspon-
dence between bit A and bit a, B and b, C and c, D and d, E
and e, F and f, G and g, and H and h. Bits i and j are derived,
respectively, from (A,B,C,D,E) and (F,G,H).
The bit labeled A in the description of the 8B/10B Transmission
Code corresponds to bit 0 in the numbering scheme of the
FC-2 specification, B corresponds to bit 1, as shown here:
To clarify this correspondence, the following example shows
the conversion from an FC-2 Valid Data Byte to a Transmission
Character (using 8B/10B Transmission Code notation):
Converted to 8B/10B notation (note carefully that the order of
bits is reversed):
Translated to a transmission Character in the 8B/10B Trans-
mission Code:
Each valid Transmission Character of the 8B/10B Trans-
mission Code has been given a name using the following
convention: cxx.y, where c is used to show whether the Trans-
mission Character is a Data Character (c is set to D, and the
SC/D* pin is LOW) or a Special Character (c is set to K, and the
SC/D* pin is HIGH). When c is set to D, xx is the decimal value of
the binary number composed of the bits E, D, C, B, and A in that
order, and the y is the decimal value of the binary number
composed of the bits H, G, and F in that order. When c is set to K,
xx and y are derived by comparing the encoded bit patterns of the
Special Character to those patterns derived from encoded Valid
Data bytes and selecting the names of the patterns most similar to
the encoded bit patterns of the Special Character.
Under the above conventions, the Transmission Character
used for the examples above, is referred to by the name D5.2.
The Special Character K29.7 is so named because the first six
bits (abcdei) of this character make up a bit pattern similar to
that resulting from the encoding of the unencoded 11101
pattern (29), and because the second four bits (fghj) make up
a bit pattern similar to that resulting from the encoding of the
unencoded 111 pattern (7).
Note. This definition of the 10-bit Transmission Code is based
on (and is in basic agreement with) the following references,
which describe the same 10-bit transmission code.
A.X. Widmer and P.A. Franaszek. “A DC-Balanced, Parti-
tioned-Block, 8B/10B Transmission Code” IBM Journal of
Research and Development, 27, No. 5: 440-451 (September,
1983).
FC-2 bit designation—
HOTLink TX/RX designation— 7 6 5 4 3 2 1 0
8B/10B bit designation—
Data Byte Name
FC-2 45
Bits: abcdeifghj
Bits: 7654 3210
1010010101
D5.2
Bits: ABCDE FGH
H G F E D C B A
7 6 5 4 3 2 1 0
0100 0101
10100 010
U.S. Patent 4,486,739. Peter A. Franaszek and Albert X.
Widmer. “Byte-Oriented DC Balanced (0.4) 8B/10B Parti-
tioned Block Transmission Code” (December 4, 1984).
Fibre Channel Physical and Signaling Interface (ANS
X3.230−1994 ANSI FC−PH Standard).
IBM Enterprise Systems Architecture/390 ESCON I/O
Interface (document number SA22−7202).
8B/10B Transmission Code
The following information describes how the tables are used
for both generating valid Transmission Characters (encoding)
and checking the validity of received Transmission Characters
(decoding). It also specifies the ordering rules to be followed
when transmitting the bits within a character and the
characters within the higher-level constructs specified by the
standard.
Transmission Order
Within the definition of the 8B/10B Transmission Code, the bit
positions of the Transmission Characters are labeled a, b, c,
d, e, i, f, g, h, j. Bit “a” is transmitted first followed by bits b, c,
d, e, i, f, g, h, and j in that order. (Note that bit i is transmitted
between bit e and bit f, rather than in alphabetical order.)
Valid and Invalid Transmission Characters
The following tables define the valid Data Characters and valid
Special Characters (K characters), respectively. The tables
are used for both generating valid Transmission Characters
(encoding) and checking the validity of received Transmission
Characters (decoding). In the tables, each Valid-Data-byte or
Special-Character-code entry has two columns that represent
two (not necessarily different) Transmission Characters. The
two columns correspond to the current value of the running
disparity (“Current RD−” or “Current RD+”). Running disparity
is a binary parameter with either the value negative (−) or the
value positive (+).
After powering on, the Transmitter may assume either a
positive or negative value for its initial running disparity. Upon
transmission of any Transmission Character, the transmitter
will select the proper version of the Transmission Character
based on the current running disparity value, and the Trans-
mitter calculates a new value for its running disparity based on
the contents of the transmitted character. Special Character
codes C1.7 and C2.7 can be used to force the transmission of
a specific Special Character with a specific running disparity
as required for some special sequences in X3.230.
After powering on, the Receiver may assume either a positive
or negative value for its initial running disparity. Upon reception
of any Transmission Character, the Receiver decides whether
the Transmission Character is valid or invalid according to the
following rules and tables and calculates a new value for its
Running Disparity based on the contents of the received
character.
The following rules for running disparity are used to calculate
the new running-disparity value for Transmission Characters
that have been transmitted (Transmitter’s running disparity)
and that have been received (Receiver’s running disparity).
Running disparity for a Transmission Character is calculated
from sub-blocks, where the first six bits (abcdei) form one
sub-block and the second four bits (fghj) form the other
CY7C924ADX
Page 49 of 58
[+] Feedback

Related parts for CY7C924ADX-AC