MCF5282CVF80J Freescale Semiconductor, MCF5282CVF80J Datasheet - Page 39

no-image

MCF5282CVF80J

Manufacturer Part Number
MCF5282CVF80J
Description
IC MPU 512K FLASH 256MAPBGA
Manufacturer
Freescale Semiconductor
Series
MCF528xr
Datasheet

Specifications of MCF5282CVF80J

Core Processor
Coldfire V2
Core Size
32-Bit
Speed
80MHz
Connectivity
CAN, EBI/EMI, Ethernet, I²C, SPI, UART/USART
Peripherals
DMA, LVD, POR, PWM, WDT
Number Of I /o
150
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
256-MAPBGA
Processor Series
MCF528x
Core
ColdFire V2
3rd Party Development Tools
JLINK-CF-BDM26, EWCF
Development Tools By Supplier
NNDK-MOD5282-KIT
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-
Lead Free Status / Rohs Status
No

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCF5282CVF80J
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
1.1.1
The processor core is comprised of two separate pipelines that are decoupled by an instruction buffer. The
two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction
fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting
execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage
decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction
execution and calculates operand effective addresses, if needed.
The V2 core implements the ColdFire instruction set architecture revision A with added support for a
separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the
MCF5282 core includes the enhanced multiply-accumulate unit (EMAC) for improved signal processing
capabilities. The EMAC implements a 4-stage execution pipeline, optimized for 32 x 32 bit operations,
with support for four 48-bit accumulators. Supported operands include 16- and 32-bit signed and unsigned
integers, signed fractional operands, and a complete set of instructions to process these data types. The
EMAC provides superb support for execution of DSP operations within the context of a single processor
at a minimal hardware cost.
1.1.1.1
The 2-Kbyte cache can be configured into one of three possible organizations: a 2-Kbyte instruction cache,
a 2-Kbyte data cache or a split 1-Kbyte instruction/1-Kbyte data cache. The configuration is
software-programmable by control bits within the privileged cache configuration register (CACR). In all
configurations, the cache is a direct-mapped single-cycle memory, organized as 128 lines, each containing
16 bytes of data. The memories consist of a 128-entry tag array (containing addresses and control bits) and
a 2-Kbyte data array, organized as 512 x 32 bits. The tag and data arrays are accessed in parallel using the
following address bits:
If the desired address is mapped into the cache memory, the output of the data array is driven onto the
ColdFire core's local data bus, completing the access in a single cycle. If the data is not mapped into the
tag memory, a cache miss occurs and the processor core initiates a 16-byte line-sized fetch. The cache
module includes a 16-byte line fill buffer used as temporary storage during miss processing. For all data
cache configurations, the memory operates in write-through mode and all operand writes generate an
external bus cycle.
1.1.1.2
The SRAM module provides a general-purpose 64-Kbyte memory block that the ColdFire core can access
in a single cycle. The location of the memory block can be set to any 64-Kbyte boundary within the
4-Gbyte address space. The memory is ideal for storing critical code or data structures, for use as the
system stack, or for storing FEC data buffers. Because the SRAM module is physically connected to the
processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing
commands from the debug module.
Freescale Semiconductor
Version 2 ColdFire Core
Cache
SRAM
2 Kbyte I-Cache
2 Kbyte D-Cache
Split I-/D-Cache 0
Instruction Fetches
Operand Accesses
MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3
Configuration
Table 1-1. Cache Configuration
Tag Address
0, [9:4]
1, [9:4]
[10:4]
[10:4]
Data Array Address
0, [9:2]
1, [9:2]
[10:2]
[10:2]
Overview
1-7

Related parts for MCF5282CVF80J