PIC18F2320-I/SO Microchip Technology, PIC18F2320-I/SO Datasheet - Page 87

IC MCU FLASH 4KX16 EEPROM 28SOIC

PIC18F2320-I/SO

Manufacturer Part Number
PIC18F2320-I/SO
Description
IC MCU FLASH 4KX16 EEPROM 28SOIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2320-I/SO

Core Size
8-Bit
Program Memory Size
8KB (4K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
25
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI, I2C, USART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
25
Number Of Timers
2 x 8 bit
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, ICE2000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Package
28SOIC W
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MIL
Lead Free Status / Rohs Status
 Details
8.0
8.1
An 8 x 8 hardware multiplier is included in the ALU of
the PIC18F2X20/4X20 devices. By making the multiply
a hardware operation, it completes in a single instruc-
tion cycle. This is an unsigned multiply that gives a
16-bit result. The result is stored into the 16-bit product
register pair (PRODH:PRODL). The multiplier does not
affect any flags in the STATUS register.
Making the 8 x 8 multiplier execute in a single-cycle
gives the following advantages:
• Higher computational throughput
• Reduces code size requirements for multiply
The performance increase allows the device to be used
in applications previously reserved for Digital Signal
Processors.
Table 8-1 shows a performance comparison between
enhanced devices using the single-cycle hardware
multiply and performing the same function without the
hardware multiply.
TABLE 8-1:
© 2007 Microchip Technology Inc.
16 x 16 unsigned
algorithms
8 x 8 unsigned
16 x 16 signed
8 x 8 signed
Routine
8 X 8 HARDWARE MULTIPLIER
Introduction
PERFORMANCE COMPARISON
Without hardware multiply
Without hardware multiply
Without hardware multiply
Without hardware multiply
Hardware multiply
Hardware multiply
Hardware multiply
Hardware multiply
Multiply Method
PIC18F2220/2320/4220/4320
Program
Memory
(Words)
13
33
21
28
52
35
1
6
8.2
Example 8-1 shows the sequence to do an 8 x 8
unsigned multiply. Only one instruction is required
when one argument of the multiply is already loaded in
the WREG register.
Example 8-2 shows the sequence to do an 8 x 8 signed
multiply. To account for the sign bits of the arguments,
each argument’s Most Significant bit (MSb) is tested
and the appropriate subtractions are done.
EXAMPLE 8-1:
EXAMPLE 8-2:
MOVF
MULWF
MOVF
MULWF
BTFSC
SUBWF
MOVF
BTFSC
SUBWF
Cycles
(Max)
242
254
69
91
28
40
1
6
Operation
ARG1, W
ARG2
ARG1, W
ARG2
ARG2, SB
PRODH, F
ARG2, W
ARG1, SB
PRODH, F
@ 40 MHz
24.2 μs
25.4 μs
100 ns
600 ns
6.9 μs
9.1 μs
2.8 μs
4.0 μs
8 x 8 UNSIGNED
MULTIPLY ROUTINE
8 x 8 SIGNED MULTIPLY
ROUTINE
;
; ARG1 * ARG2 ->
;
; ARG1 * ARG2 ->
; PRODH:PRODL
; Test Sign Bit
; PRODH = PRODH
;
; Test Sign Bit
; PRODH = PRODH
;
@ 10 MHz
102.6 μs
27.6 μs
36.4 μs
96.8 μs
16.0 μs
11.2 μs
Time
400 ns
2.4 μs
PRODH:PRODL
DS39599G-page 85
- ARG1
- ARG2
@ 4 MHz
242 μs
254 μs
69 μs
91 μs
28 μs
40 μs
1 μs
6 μs

Related parts for PIC18F2320-I/SO