PIC18F2320-I/SO Microchip Technology, PIC18F2320-I/SO Datasheet - Page 163

IC MCU FLASH 4KX16 EEPROM 28SOIC

PIC18F2320-I/SO

Manufacturer Part Number
PIC18F2320-I/SO
Description
IC MCU FLASH 4KX16 EEPROM 28SOIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2320-I/SO

Core Size
8-Bit
Program Memory Size
8KB (4K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
25
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI, I2C, USART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
25
Number Of Timers
2 x 8 bit
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, ICE2000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Package
28SOIC W
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MIL
Lead Free Status / Rohs Status
 Details
17.3.6
In Slave mode, the data is transmitted and received as
the external clock pulses appear on SCK. When the
last bit is latched, the SSPIF interrupt flag bit is set.
While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.
While in power-managed modes, the slave can trans-
mit/receive data. When a byte is received, the device
will wake-up from power-managed modes.
17.3.7
The SS pin allows a master controller to select one of
several slave controllers for communications in sys-
tems with more than one slave. The SPI must be in
Slave
(SSPCON1<3:0> = 04h). The SS pin is configured for
input by setting TRISA<5>. When the SS pin is low,
transmission and reception are enabled and the SDO
pin is driven. When the SS pin goes high, the SDO pin
FIGURE 17-4:
© 2007 Microchip Technology Inc.
SS
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
Write to
SSPBUF
SDO
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SSPIF
Interrupt
Flag
SSPSR to
SSPBUF
mode
SLAVE MODE
SLAVE SELECT CONTROL
with
SLAVE SYNCHRONIZATION WAVEFORM
SS
pin
bit 7
bit 7
control
bit 6
PIC18F2220/2320/4220/4320
enabled
is tri-stated, even if in the middle of a transmitted byte.
External pull-up/pull-down resistors may be desirable,
depending on the application.
When the SPI module resets, SSPSR is cleared. This
can be done by either driving the SS pin to a high level
or clearing the SSPEN bit.
To emulate two-wire communication, the SDO pin can
be connected to the SDI pin. When the SPI needs to
operate as a receiver the SDO pin can be configured as
an input. This disables transmissions from the SDO.
The SDI can always be left as an input (SDI function)
since it cannot create a bus conflict.
Note 1: When the SPI is in Slave mode with SS pin
2: If the SPI is used in Slave mode with CKE
control enabled (SSPCON1<3:0> = 0100),
the SPI module will reset when the SS pin is
set high.
set, then the SS pin control must be
enabled.
bit 7
bit 7
Next Q4 Cycle
after Q2↓
DS39599G-page 161
bit 0
bit 0

Related parts for PIC18F2320-I/SO