ADSP-BF537 AD [Analog Devices], ADSP-BF537 Datasheet - Page 8

no-image

ADSP-BF537

Manufacturer Part Number
ADSP-BF537
Description
Blackfin Embedded Processor
Manufacturer
AD [Analog Devices]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADSP-BF537BBC-5A
Manufacturer:
VICOR
Quantity:
12
Part Number:
ADSP-BF537BBC-5A
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADSP-BF537BBCZ-5A
Manufacturer:
AD
Quantity:
201
Part Number:
ADSP-BF537BBCZ-5A
Manufacturer:
ST
0
Part Number:
ADSP-BF537BBCZ-5AV
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADSP-BF537BBCZ-5B
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADSP-BF537BBCZ-5B
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADSP-BF537BBCZ-5BV
Manufacturer:
Analog Devices Inc
Quantity:
10 000
ADSP-BF534/ADSP-BF536/ADSP-BF537
Table 3. System Interrupt Controller (SIC) (Continued)
Event Control
The Blackfin processor provides a very flexible mechanism to
control the processing of events. In the CEC, three registers are
used to coordinate and control events. Each register is
16 bits wide:
The SIC allows further control of event processing by providing
three 32-bit interrupt control and status registers. Each register
contains a bit corresponding to each of the peripheral interrupt
events shown in
Peripheral Interrupt Event
DMA Channels 12 and 13
(Memory DMA Stream 0)
DMA Channels 14 and 15
(Memory DMA Stream 1)
Software Watchdog Timer
Port F Interrupt B
• CEC interrupt latch register (ILAT) – Indicates when
• CEC interrupt mask register (IMASK) – Controls the
• CEC interrupt pending register (IPEND) – The IPEND
• SIC interrupt mask register (SIC_IMASK) – Controls the
• SIC interrupt status register (SIC_ISR) – As multiple
events have been latched. The appropriate bit is set when
the processor has latched the event and cleared when the
event has been accepted into the system. This register is
updated automatically by the controller, but it may be writ-
ten only when its corresponding IMASK bit is cleared.
masking and unmasking of individual events. When a bit is
set in the IMASK register, that event is unmasked and is
processed by the CEC when asserted. A cleared bit in the
IMASK register masks the event, preventing the processor
from servicing the event even though the event may be
latched in the ILAT register. This register may be read or
written while in supervisor mode. (Note that general-pur-
pose interrupts can be globally enabled and disabled with
the STI and CLI instructions, respectively.)
register keeps track of all nested events. A set bit in the
IPEND register indicates the event is currently active or
nested at some level. This register is updated automatically
by the controller but may be read while in supervisor mode.
masking and unmasking of each peripheral interrupt event.
When a bit is set in the register, that peripheral event is
unmasked and is processed by the system when asserted. A
cleared bit in the register masks the peripheral event, pre-
venting the processor from servicing the event.
peripherals can be mapped to a single event, this register
allows the software to determine which peripheral event
source triggered the interrupt. A set bit indicates the
peripheral is asserting the interrupt, and a cleared bit indi-
cates the peripheral is not asserting the event.
Table 3 on Page
7.
Default
Mapping
IVG13
IVG13
IVG13
IVG13
Peripheral
Interrupt ID
29
30
31
31
Rev. B | Page 8 of 68 | July 2006
Because multiple interrupt sources can map to a single general-
purpose interrupt, multiple pulse assertions can occur simulta-
neously, before or during interrupt processing for an interrupt
event already detected on this interrupt input. The IPEND reg-
ister contents are monitored by the SIC as the interrupt
acknowledgement.
The appropriate ILAT register bit is set when an interrupt rising
edge is detected (detection requires two core clock cycles). The
bit is cleared when the respective IPEND register bit is set. The
IPEND bit indicates that the event has entered into the proces-
sor pipeline. At this point the CEC recognizes and queues the
next rising edge event on the corresponding event input. The
minimum latency from the rising edge transition of the general-
purpose interrupt to the IPEND output asserted is three core
clock cycles; however, the latency can be much higher, depend-
ing on the activity within and the state of the processor.
DMA CONTROLLERS
The Blackfin processors have multiple, independent DMA con-
trollers that support automated data transfers with minimal
overhead for the processor core. DMA transfers can occur
between the processor’s internal memories and any of its DMA-
capable peripherals. Additionally, DMA transfers can be accom-
plished between any of the DMA-capable peripherals and
external devices connected to the external memory interfaces,
including the SDRAM controller and the asynchronous mem-
ory controller. DMA-capable peripherals include the Ethernet
MAC (ADSP-BF536 and ADSP-BF537 only), SPORTs, SPI port,
UARTs, and PPI. Each individual DMA-capable peripheral has
at least one dedicated DMA channel.
The DMA controller supports both one-dimensional (1-D) and
two-dimensional (2-D) DMA transfers. DMA transfer initial-
ization can be implemented from registers or from sets of
parameters called descriptor blocks.
The 2-D DMA capability supports arbitrary row and column
sizes up to 64K elements by 64K elements, and arbitrary row
and column step sizes up to ±32K elements. Furthermore, the
column step size can be less than the row step size, allowing
implementation of interleaved data streams. This feature is
especially useful in video applications where data can be de-
interleaved on the fly.
Examples of DMA types supported by the DMA controller
include:
• SIC interrupt wakeup enable register (SIC_IWR) – By
• A single, linear buffer that stops upon completion
• A circular, auto-refreshing buffer that interrupts on each
• 1-D or 2-D DMA using a linked list of descriptors
• 2-D DMA using an array of descriptors, specifying only the
enabling the corresponding bit in this register, a peripheral
can be configured to wake up the processor, should the
core be idled when the event is generated.
mation, see Dynamic Power Management on Page
full or fractionally full buffer
base DMA address within a common page.
(For more infor-
13.)

Related parts for ADSP-BF537