atmega32c1 ATMEL Corporation, atmega32c1 Datasheet - Page 158

no-image

atmega32c1

Manufacturer Part Number
atmega32c1
Description
Atmega32m1 Automotive 8-bit Avr Microcontroller With 32k/64k Bytes In-system Programmable Flash
Manufacturer
ATMEL Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
atmega32c1-15AZ
Manufacturer:
ATMEL
Quantity:
170
Part Number:
atmega32c1-15AZ
Manufacturer:
Atmel
Quantity:
10 000
158
ATmega32/64/M1/C1
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.
When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
transmission flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the Buffer Register for later use.
Figure 15-2. SPI Master-slave Interconnection
The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.
In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed f
When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to
Functions” on page
Table 15-1.
MOSI
Pin
Table
SPI Pin Overrides
Direction, Master SPI
User Defined
15-1. For more details on automatic port overrides, refer to
65.
(1)
Direction, Slave SPI
Input
SHIFT
ENABLE
“Alternate Port
7647A–AVR–02/08
clkio
/4.

Related parts for atmega32c1