AT32UC3A0128AU Atmel Corporation, AT32UC3A0128AU Datasheet - Page 388

no-image

AT32UC3A0128AU

Manufacturer Part Number
AT32UC3A0128AU
Description
Manufacturer
Atmel Corporation

Specifications of AT32UC3A0128AU

Flash (kbytes)
128 Kbytes
Pin Count
144
Max. Operating Frequency
66 MHz
Cpu
32-bit AVR
# Of Touch Channels
32
Hardware Qtouch Acquisition
No
Max I/o Pins
109
Ext Interrupts
109
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device + OTG
Spi
6
Twi (i2c)
1
Uart
4
Ssc
1
Ethernet
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Dac Channels
2
Dac Resolution (bits)
16
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
YES
External Bus Interface
1
Dram Memory
sdram
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
3.0-3.6 or (1.65-1.95+3.0-3.6)
Operating Voltage (vcc)
3.0-3.6 or (1.65-1.95+3.0-3.6)
Fpu
No
Mpu / Mmu
Yes / No
Timers
10
Output Compare Channels
16
Input Capture Channels
6
Pwm Channels
13
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3A0128AU-ALUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT32UC3A0128AU-U
Manufacturer:
ATMEL
Quantity:
4
32058K AVR32-01/12
27.6.5.4
27.6.6
27.6.6.1
Data Float Wait States
READ_MODE
Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.
This wait cycle is referred to as a read to write wait state in this document.
This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See
Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:
• before starting a read access to a different external memory
• before starting a write access to the same device or to a different external one.
The Data Float Output Time (t
TDF_CYCLES field of the MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.
Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long t
memory.
The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the MODE register for the corresponding chip select.
Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turn-
ing off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.
When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.
Figure 27-21
assuming a data float period of 2 cycles (TDF_CYCLES = 2).
ation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.
illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
DF
will not slow down the execution of a program from internal
DF
Figure 27-17 on page
) for each external memory device is programmed in the
384.
Figure 27-22
shows the read oper-
AT32UC3A
388

Related parts for AT32UC3A0128AU