PIC18F43K20-E/MV Microchip Technology, PIC18F43K20-E/MV Datasheet - Page 207

8KB, Flash, 768bytes-RAM, 36I/O, 8-bit Family,nanowatt XLP 40 UQFN 5x5x0.5mm TUB

PIC18F43K20-E/MV

Manufacturer Part Number
PIC18F43K20-E/MV
Description
8KB, Flash, 768bytes-RAM, 36I/O, 8-bit Family,nanowatt XLP 40 UQFN 5x5x0.5mm TUB
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr
Datasheet

Specifications of PIC18F43K20-E/MV

Processor Series
PIC18
Core
PIC18F
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
8 KB
Data Ram Size
512 B
Interface Type
I2C, SPI, SCI, USB, MSSP, RJ11
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
35
Number Of Timers
4
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
Package / Case
UQFN-40
Development Tools By Supplier
MPLAB Integrated Development Environment
Minimum Operating Temperature
- 40 C
Operating Temperature Range
- 40 C to + 125 C
Supply Current (max)
30 uA
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
35
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 14x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Lead Free Status / Rohs Status
 Details
17.4.2
The MSSP module functions are enabled by setting
SSPEN bit of the SSPCON1 register.
The SSPCON1 register allows control of the I
operation. Four mode selection bits of the SSPCON1
register allow one of the following I
selected:
• I
• I
• I
• I
• I
• I
Selection of any I
forces the SCL and SDA pins to be open-drain,
provided these pins are programmed to inputs by
setting the appropriate TRIS bits. To ensure proper
operation of the module, pull-up resistors must be
provided externally to the SCL and SDA pins.
17.4.3
In Slave mode, the SCL and SDA pins must be config-
ured as inputs. The MSSP module will override the
input state with the output data when required
(slave-transmitter).
The I
interrupt on an address match. Through the mode
select bits, the user can also choose to interrupt on
Start and Stop bits
When an address is matched, or the data transfer after
an
automatically will generate the Acknowledge (ACK)
pulse and load the SSPBUF register with the received
value currently in the SSPSR register.
Any combination of the following conditions will cause
the MSSP module not to give this ACK pulse:
• The Buffer Full bit, BF bit of the SSPSTAT regis-
• The overflow bit, SSPOV bit of the SSPCON1
In this case, the SSPSR register value is not loaded
into the SSPBUF, but bit SSPIF of the PIR1 register is
set. The BF bit is cleared by reading the SSPBUF
register, while bit SSPOV is cleared through software.
The SCL clock input must have a minimum high and
low for proper operation. The high and low times of the
I
MSSP module, are shown in timing parameter 100 and
parameter 101 (See Table 26-19).
 2010 Microchip Technology Inc.
2
C specification, as well as the requirement of the
(SSPADD + 1))
Stop bit interrupts enabled
Stop bit interrupts enabled
Idle
ter, is set before the transfer is received.
register, is set before the transfer is received.
2
2
2
2
2
2
C Master mode, clock = (F
C Slave mode (7-bit address)
C Slave mode (10-bit address)
C Slave mode (7-bit address) with Start and
C Slave mode (10-bit address) with Start and
C Firmware Controlled Master mode, slave is
address match
2
C Slave mode hardware will always generate an
OPERATION
SLAVE MODE
2
C mode with the SSPEN bit set,
is received,
OSC
/(4 x
2
C modes to be
the
hardware
2
C
17.4.3.1
Once the MSSP module has been enabled, it waits for
a Start condition to occur. Following the Start condition,
the 8 bits are shifted into the SSPSR register. All
incoming bits are sampled with the rising edge of the
clock (SCL) line. The value of register SSPSR<7:1> is
compared to the value of the SSPADD register. The
address is compared on the falling edge of the eighth
clock (SCL) pulse. If the addresses match and the BF
and SSPOV bits are clear, the following events occur:
1.
2.
3.
4.
In 10-bit Address mode, two address bytes need to be
received by the slave. The five Most Significant bits
(MSbs) of the first address byte specify if this is a 10-bit
address. Bit R/W of the SSPSTAT register must specify
a write so the slave device will receive the second
address byte. For a 10-bit address, the first byte would
equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two
MSbs of the address. The sequence of events for 10-bit
address is as follows, with steps 7 through 9 for the
slave-transmitter:
1.
2.
3.
4.
5.
6.
7.
8.
9.
PIC18F2XK20/4XK20
The SSPSR register value is loaded into the
SSPBUF register.
The Buffer Full bit, BF, is set.
An ACK pulse is generated.
MSSP Interrupt Flag bit, SSPIF of the PIR1 reg-
ister, is set (interrupt is generated, if enabled) on
the falling edge of the ninth SCL pulse.
Receive first (high) byte of address (bits SSPIF,
BF and UA (of the SSPSTAT register are set).
Update the SSPADD register with second (low)
byte of address (clears bit UA and releases the
SCL line).
Read the SSPBUF register (clears bit BF) and
clear flag bit, SSPIF.
Receive second (low) byte of address (bits
SSPIF, BF and UA are set). If the address
matches then the SCL is held until the next step.
Otherwise the SCL line is not held.
Update the SSPADD register with the first (high)
byte of address. (This will clear bit UA and
release a held SCL line.)
Read the SSPBUF register (clears bit BF) and
clear flag bit, SSPIF.
Receive Repeated Start condition.
Receive first (high) byte of address (bits SSPIF
and BF are set).
Read the SSPBUF register (clears bit BF) and
clear flag bit, SSPIF.
Addressing
DS41303G-page 207

Related parts for PIC18F43K20-E/MV