SI1015-A-GM Silicon Laboratories Inc, SI1015-A-GM Datasheet - Page 211

IC TXRX MCU + EZRADIOPRO

SI1015-A-GM

Manufacturer Part Number
SI1015-A-GM
Description
IC TXRX MCU + EZRADIOPRO
Manufacturer
Silicon Laboratories Inc
Datasheets

Specifications of SI1015-A-GM

Package / Case
42-QFN
Frequency
240MHz ~ 960MHz
Data Rate - Maximum
256kbps
Modulation Or Protocol
FSK, GFSK, OOK
Applications
General Purpose
Power - Output
13dBm
Sensitivity
-121dBm
Voltage - Supply
0.9 V ~ 3.6 V
Current - Receiving
18.5mA
Current - Transmitting
30mA
Data Interface
PCB, Surface Mount
Memory Size
8kB Flash, 768B RAM
Antenna Connector
PCB, Surface Mount
Number Of Receivers
1
Number Of Transmitters
1
Wireless Frequency
240 MHz to 960 MHz
Interface Type
UART, SMBus, SPI, PCA
Output Power
13 dBm
Operating Supply Voltage
0.9 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Maximum Supply Current
4 mA
Minimum Operating Temperature
- 40 C
Modulation
FSK, GFSK, OOK
Protocol Supported
C2, SMBus
Core
8051
Program Memory Type
Flash
Program Memory Size
8 KB
Data Ram Size
768 B
Supply Current (max)
4 mA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Operating Temperature
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1868-5

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SI1015-A-GM
Manufacturer:
Silicon Labs
Quantity:
135
Part Number:
SI1015-A-GM
Manufacturer:
SILICONLA
Quantity:
20 000
20.2.5. Automatic Gain Control (Crystal Mode Only) and SmaRTClock Bias Doubling
Automatic Gain Control allows the SmaRTClock oscillator to trim the oscillation amplitude of a crystal in
order to achieve the lowest possible power consumption. Automatic Gain Control automatically detects
when the oscillation amplitude has reached a point where it safe to reduce the drive current, therefore, it
may be enabled during crystal startup. It is recommended to enable Automatic Gain Control in most sys-
tems which use the SmaRTClock oscillator in Crystal Mode. The following are recommended crystal spec-
ifications and operating conditions when Automatic Gain Control is enabled:
When using Automatic Gain Control, it is recommended to perform an oscillation robustness test to ensure
that the chosen crystal will oscillate under the worst case condition to which the system will be exposed.
The worst case condition that should result in the least robust oscillation is at the following system condi-
tions: lowest temperature, highest supply voltage, highest ESR, highest load capacitance, and lowest bias
current (AGC enabled, Bias Double Disabled).
To perform the oscillation robustness test, the SmaRTClock oscillator should be enabled and selected as
the system clock source. Next, the SYSCLK signal should be routed to a port pin configured as a push-pull
digital output. The positive duty cycle of the output clock can be used as an indicator of oscillation robust-
ness. As shown in Figure 20.2, duty cycles less than 55% indicate a robust oscillation. As the duty cycle
approaches 60%, oscillation becomes less reliable and the risk of clock failure increases. Increasing the
bias current (by disabling AGC) will always improve oscillation robustness and will reduce the output
ESR < 50 k 
Load Capacitance < 10 pF
Supply Voltage < 3.0 V
Temperature > –20 °C
LOADCAP
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Table 20.2. SmaRTClock Load Capacitance Settings
Crystal Load Capacitance
4.0 pF
4.5 pF
5.0 pF
5.5 pF
6.0 pF
6.5 pF
7.0 pF
7.5 pF
8.0 pF
8.5 pF
9.0 pF
9.5 pF
10.5 pF
11.5 pF
12.5 pF
13.5 pF
Rev. 1.0
25.0 pF
27.0 pF
Equivalent Capacitance seen on
XTAL3 and XTAL4
9.0 pF
10.0 pF
11.0 pF
12.0 pF
13.0 pF
14.0 pF
15.0 pF
16.0 pF
17.0 pF
18.0 pF
19.0 pF
23.0 pF
8.0 pF
21.0 pF
Si1010/1/2/3/4/5
211

Related parts for SI1015-A-GM