ATMEGA165P-16MU Atmel, ATMEGA165P-16MU Datasheet - Page 138

IC AVR MCU 16K 16MHZ 64-QFN

ATMEGA165P-16MU

Manufacturer Part Number
ATMEGA165P-16MU
Description
IC AVR MCU 16K 16MHZ 64-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA165P-16MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Processor Series
ATMEGA16x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
SPI, USART, USI
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
16.8
8019K–AVR–11/10
Timer/Counter Timing Diagrams
pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register
at the compare match between OCR2A and TCNT2 when the counter increments, and setting
(or clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the coun-
ter decrements. The PWM frequency for the output when using phase correct PWM can be
calculated by the following equation:
The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).
The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.
At the very start of period 2 in
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.
• OCR2A changes its value from MAX, like in
• The timer starts counting from a value higher than the one in OCR2A, and for that reason
The following figures show the Timer/Counter in synchronous mode, and the timer clock (clk
is therefore shown as a clock enable signal. In asynchronous mode, clk
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set.
count sequence close to the MAX value in all modes other than phase correct PWM mode.
Figure 16-8. Timer/Counter Timing Diagram, no Prescaling
Figure 16-9 on page 139
is MAX the OCn pin value is the same as the result of a down-counting compare match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an
up-counting Compare Match.
misses the Compare Match and hence the OCn change that would have happened on the way
up.
Figure 16-8
TCNTn
(clk
TOVn
clk
clk
I/O
I/O
Tn
/1)
contains timing data for basic Timer/Counter operation. The figure shows the
MAX - 1
shows the same timing data, but with the prescaler enabled.
Figure 16-7 on page 137
f
OCnxPCPWM
MAX
Figure 16-7 on page
=
----------------- -
N 510
f
clk_I/O
OCn has a transition from high to low
BOTTOM
137. When the OCR2A value
ATmega165P
I/O
should be replaced by
BOTTOM + 1
138
T2
)

Related parts for ATMEGA165P-16MU