AT90PWM1 Atmel Corporation, AT90PWM1 Datasheet - Page 98

no-image

AT90PWM1

Manufacturer Part Number
AT90PWM1
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90PWM1

Flash (kbytes)
8 Kbytes
Pin Count
24
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
19
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Spi
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
2
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 105
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
1
Pwm Channels
7
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90PWM1-16SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT90PWM161-16MN
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT90PWM161-WN
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
15.1.2
15.2
98
Accessing 16-bit Registers
AT90PWM1
Definitions
The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn). The Input Capture unit includes a digital
filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.
The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCRnA Register, the ICRn Register, or by a set of fixed values. When using
OCRnA as TOP value in a PWM mode, the OCRnA Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used
as an alternative, freeing the OCRnA to be used as PWM output.
The following definitions are used extensively throughout the section:
Table 28.
The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.
Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnx 16-bit
registers does not involve using the temporary register.
To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.
The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCRnx and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit
access.
BOTTOM
MAX
TOP
The counter reaches the BOTTOM when it becomes 0x0000.
The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).
The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or 0x03FF, or to the value stored in the OCRnA or ICRn Register. The assignment is
dependent of the mode of operation.
4378C–AVR–09/08

Related parts for AT90PWM1