ATMEGA8L ATMEL [ATMEL Corporation], ATMEGA8L Datasheet - Page 225

no-image

ATMEGA8L

Manufacturer Part Number
ATMEGA8L
Description
8-bit AVR with 8K Bytes In-System Programmable Flash
Manufacturer
ATMEL [ATMEL Corporation]
Datasheets

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8L-6AU
Manufacturer:
ATMEL
Quantity:
675
Part Number:
ATMEGA8L-8AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA8L-8AI
Manufacturer:
MICROCHIP
Quantity:
1 292
Part Number:
ATMEGA8L-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA8L-8AI
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATMEGA8L-8AI
Manufacturer:
ALTERA
0
Part Number:
ATMEGA8L-8AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA8L-8AU
Manufacturer:
ATMEL
Quantity:
4 590
Part Number:
ATMEGA8L-8AU
Manufacturer:
Atmel
Quantity:
7 500
Part Number:
ATMEGA8L-8AU
Manufacturer:
ATMEL
Quantity:
591
Part Number:
ATMEGA8L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA8L-8AU
Quantity:
7
Company:
Part Number:
ATMEGA8L-8AU
Quantity:
7
Chip Erase
Programming the Flash
2486M–AVR–12/03
The Chip Erase will erase the Flash and EEPROM
Bits are not reset until the Program memory has been completely erased. The Fuse Bits
are not changed. A Chip Erase must be performed before the Flash and/or the
EEPROM are reprogrammed.
Note:
Load Command “Chip Erase”
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “1000 0000”. This is the command for Chip Erase.
4. Give XTAL1 a positive pulse. This loads the command.
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.
The Flash is organized in pages, see Table 93 on page 224. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:
A. Load Command “Write Flash”
1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to ”0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.
B. Load Address Low byte
1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address Low byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the address Low byte.
C. Load Data Low byte
1. Set XA1, XA0 to “01”. This enables data loading.
2. Set DATA = Data Low byte (0x00 - 0xFF).
3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High byte
1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “01”. This enables data loading.
3. Set DATA = Data High byte (0x00 - 0xFF).
4. Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data
1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 106 for
F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.
signal waveforms)
1. The EEPRPOM memory is preserved during chip erase if the EESAVE Fuse is
programmed.
(1)
memories plus Lock Bits. The Lock
ATmega8(L)
225

Related parts for ATMEGA8L