ATmega32A Atmel Corporation, ATmega32A Datasheet - Page 19

no-image

ATmega32A

Manufacturer Part Number
ATmega32A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega32A

Flash (kbytes)
32 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32A
Manufacturer:
Atmel
Quantity:
150
Part Number:
ATMEGA32A
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega32A-AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32A-ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32A-AU
Manufacturer:
ATMEL
Quantity:
5 600
Part Number:
ATmega32A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega32A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATmega32A-AU
Quantity:
1 920
Part Number:
ATmega32A-AUR
Manufacturer:
SMD
Quantity:
5
Part Number:
ATmega32A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Company:
Part Number:
ATmega32A-MNR
Quantity:
4 000
Part Number:
ATmega32A-MU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
ATmega32A-PU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATmega32A-PU
Manufacturer:
Atmel
Quantity:
26 792
7.4
7.4.1
7.4.2
7.4.3
8155C–AVR–02/11
EEPROM Data Memory
EEPROM Read/Write Access
EEPROM Write During Power-down Sleep Mode
Preventing EEPROM Corruption
The Atmel
a separate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the
CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM
Data Register, and the EEPROM Control Register.
“Memory Programming” on page 267
in SPI, JTAG, or Parallell Programming mode.
The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, V
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See
these situations.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.
When entering Power-down Sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the Oscillator continues running, and
as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
®
“Preventing EEPROM Corruption” on page 19
AVR
®
ATmega32A contains 1024bytes of data EEPROM memory. It is organized as
CC
is likely to rise or fall slowly on Power-up/down. This causes the device for
CC,
the EEPROM data can be corrupted because the supply voltage is
contains a detailed description on EEPROM Programming
Table 7-1 on page
for details on how to avoid problems in
22. A self-timing function,
ATmega32A
19

Related parts for ATmega32A