AT90USB162 Atmel Corporation, AT90USB162 Datasheet - Page 69

no-image

AT90USB162

Manufacturer Part Number
AT90USB162
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90USB162

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
Hardware Qtouch Acquisition
No
Max I/o Pins
22
Ext Interrupts
21
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
5
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90USB162-16AU
Manufacturer:
Atmel
Quantity:
30 024
Part Number:
AT90USB162-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB162-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT90USB162-16AUR
Manufacturer:
Atmel
Quantity:
2 751
Part Number:
AT90USB162-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB162-16MU
Manufacturer:
Atmel
Quantity:
42 926
Part Number:
AT90USB162-16MU
Manufacturer:
ATMEL
Quantity:
3 470
Part Number:
AT90USB162-16MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT90USB162-16MUR
Manufacturer:
TT
Quantity:
400 000
11.2.2
11.2.3
11.2.4
7707F–AVR–11/10
Toggling the Pin
Switching Between Input and Output
Reading the Pin Value
If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled state is fully acceptable, as
a high-impedant environment will not notice the difference between a strong high driver and a
pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-
ups in all ports.
Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.
Table 11-1
Table 11-1.
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay.
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted t
DDxn
0
0
0
1
1
PORTxn
summarizes the control signals for the pin value.
0
1
1
0
1
Port Pin Configurations
(in MCUCR)
PUD
X
0
1
X
X
Figure
Output
Output
Input
Input
Input
I/O
11-2, the PINxn Register bit and the preceding latch con-
pd,max
Pull-up
Yes
No
No
No
No
and t
Pxn will source current if ext. pulled
low.
Output Low (Sink)
Output High (Source)
Comment
Tri-state (Hi-Z)
Tri-state (Hi-Z)
pd,min
respectively.
Figure 11-3
AT90USB82/162
shows a timing dia-
69

Related parts for AT90USB162