AT90CAN64 Atmel Corporation, AT90CAN64 Datasheet - Page 232

no-image

AT90CAN64

Manufacturer Part Number
AT90CAN64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90CAN64

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Can
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90CAN64-15AT
Manufacturer:
Atmel
Quantity:
3 327
Part Number:
AT90CAN64-15AT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90CAN64-15AT1
Manufacturer:
Atmel
Quantity:
1 985
Part Number:
AT90CAN64-15AT1
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90CAN64-15AZ
Manufacturer:
Atmel
Quantity:
1 995
Part Number:
AT90CAN64-15AZ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90CAN64-15MT
Manufacturer:
Freescale
Quantity:
100
Part Number:
AT90CAN64-15MT1
Manufacturer:
Atmel
Quantity:
7 775
Part Number:
AT90CAN64-15MT1
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT90CAN64-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90CAN64-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT90CAN64-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90CAN64-16MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
18.9
232
Multi-master Systems and Arbitration
AT90CAN32/64/128
If multiple masters are connected to the same bus, transmissions may be initiated simulta-
neously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a slave receiver.
Figure 18-20. An Arbitration Example
Several different scenarios may arise during arbitration, as described below:
• Two or more masters are performing identical communication with the same slave. In this
• Two or more masters are accessing the same slave with different data or direction bit. In this
• Two or more masters are accessing different slaves. In this case, arbitration will occur in the
case, neither the slave nor any of the masters will know about the bus contention.
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters
trying to output a one on SDA while another master outputs a zero will lose the arbitration.
Losing masters will switch to not addressed slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.
SLA bits. Masters trying to output a one on SDA while another master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to slave mode to check if they are
being addressed by the winning master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.
SDA
SCL
TRANSMITTER
Device 1
MASTER
Device 2
RECEIVER
SLAVE
Device 3
RECEIVER
SLAVE
........
Device n
R1
7679H–CAN–08/08
V
CC
R2

Related parts for AT90CAN64