DSPIC30F5011-20E/PT Microchip Technology, DSPIC30F5011-20E/PT Datasheet - Page 25

IC,DSP,16-BIT,CMOS,TQFP,64PIN,PLASTIC

DSPIC30F5011-20E/PT

Manufacturer Part Number
DSPIC30F5011-20E/PT
Description
IC,DSP,16-BIT,CMOS,TQFP,64PIN,PLASTIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F5011-20E/PT

Rohs Compliant
YES
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, LVD, POR, PWM, WDT
Number Of I /o
52
Program Memory Size
66KB (22K x 24)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
64-TFQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT64PT5 - SOCKET TRAN ICE 64MQFP/TQFPAC30F008 - MODULE SKT FOR DSPIC30F 64TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
DSPIC30F5011-20E/PTG
DSPIC30F501120EPT
DSPIC30F501120EPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F5011-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
3.1.1
This architecture fetches 24-bit wide program memory.
Consequently,
However, as the architecture is modified Harvard, data
can also be present in program space.
There are two methods by which program space can
be accessed: via special table instructions, or through
the remapping of a 16K word program space page into
the upper half of data space (see
Access from Program Memory Using Program
Space
tions offer a direct method of reading or writing the least
significant word of any address within program space,
without going through data space. The TBLRDH and
TBLWTH instructions are the only method whereby the
upper 8 bits of a program space word can be accessed
as data.
The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two 16-bit
word wide address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space which contains the least significant
data word, and TBLRDH and TBLWTH access the space
which contains the Most Significant data Byte.
Figure 3-2
ations and data space accesses (PSV = 1). Here,
P<23:0> refers to a program space word, whereas
D<15:0> refers to a data space word.
FIGURE 3-3:
© 2011 Microchip Technology Inc.
Visibility”). The TBLRDL and TBLWTL instruc-
Program Memory
‘Phantom’ Byte
(read as ‘0’)
shows how the EA is created for table oper-
DATA ACCESS FROM PROGRAM
MEMORY USING TABLE
INSTRUCTIONS
PC Address
0x000000
0x000002
0x000004
0x000006
instructions
PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)
00000000
00000000
00000000
00000000
are
Section 3.1.2 “Data
always
23
aligned.
TBLRDL.W
16
A set of table instructions are provided to move byte or
word sized data to and from program space.
1.
2.
3.
4.
dsPIC30F5011/5013
TBLRDL: Table Read Low
Word: Read the lsw of the program address;
P<15:0> maps to D<15:0>.
Byte: Read one of the LSBs of the program
address;
P<7:0> maps to the destination byte when byte
select = 0;
P<15:8> maps to the destination byte when byte
select = 1.
TBLWTL: Table Write Low (refer to
“Flash Program Memory”
Programming)
TBLRDH: Table Read High
Word: Read the most significant word of the pro-
gram address; P<23:16> maps to D<7:0>;
D<15:8> will always be = 0.
Byte: Read one of the MSBs of the program
address;
P<23:16> maps to the destination byte when
byte select = 0;
The destination byte will always be = 0 when
byte select = 1.
TBLWTH: Table Write High (refer to
“Flash Program Memory”
Programming)
TBLRDL.B (Wn<0> = 1)
8
TBLRDL.B (Wn<0> = 0)
for details on Flash
for details on Flash
0
DS70116J-page 25
Section 6.0
Section 6.0

Related parts for DSPIC30F5011-20E/PT