ATMEGA169V-1MC Atmel, ATMEGA169V-1MC Datasheet - Page 164

no-image

ATMEGA169V-1MC

Manufacturer Part Number
ATMEGA169V-1MC
Description
IC MCU AVR 16K 1.8V 1MHZ 64-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA169V-1MC

Core Processor
AVR
Core Size
8-Bit
Speed
1MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
64-MLF®, 64-QFN
For Use With
ATAVRISP2 - PROGRAMMER AVR IN SYSTEMATAVRBFLY - KIT EVALUATION AVR BUTTERFLYATSTK502 - MOD EXPANSION AVR STARTER 500
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Parity Checker
Disabling the Receiver
Flushing the Receive Buffer
Asynchronous Data
Reception
164
ATmega169V/L
The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type
of Parity Check to be performed (odd or even) is selected by the UPM0 bit. When
enabled, the Parity Checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (UPE) Flag can then be read by software to check if the frame had a Parity Error.
The UPE bit is set if the next character that can be read from the receive buffer had a
Parity Error when received and the Parity Checking was enabled at that point (UPM1 =
1). This bit is valid until the receive buffer (UDR) is read.
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXEN is set to zero)
the Receiver will no longer override the normal function of the RxD port pin. The
Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in
the buffer will be lost
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDR I/O loca-
tion until the RXC Flag is cleared. The following code example shows how to flush the
receive buffer.
Note:
The USART includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxD pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the Receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.
Assembly Code Example
C Code Example
USART_Flush:
void USART_Flush( void )
{
}
sbis UCSRA, RXC
ret
in
rjmp USART_Flush
unsigned char dummy;
while ( UCSRA & (1<<RXC) ) dummy = UDR;
1. The example code assumes that the part specific header file is included.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”,
and “SBI” instructions must be replaced with instructions that allow access to
extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and
“CBR”.
r16, UDR
(1)
(1)
2514H–AVR–05/03

Related parts for ATMEGA169V-1MC