ADE7878ACPZ Analog Devices Inc, ADE7878ACPZ Datasheet - Page 35

no-image

ADE7878ACPZ

Manufacturer Part Number
ADE7878ACPZ
Description
IC ENERGY METERING 3PH 40LFCSP
Manufacturer
Analog Devices Inc
Datasheets

Specifications of ADE7878ACPZ

Input Impedance
400 KOhm
Measurement Error
0.1%
Voltage - I/o High
2.4V
Voltage - I/o Low
0.4V
Current - Supply
22mA
Voltage - Supply
3 V ~ 3.6 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
40-WFQFN, CSP Exposed Pad
Meter Type
3 Phase
Supply Voltage Range
3V To 3.6V
Operating Temperature Range
-40°C To +85°C
Digital Ic Case Style
LFCSP
No. Of Pins
40
Msl
MSL 1 - Unlimited
Peak Reflow Compatible (260 C)
Yes
Supply Voltage Min
3V
Rohs Compliant
Yes
Leaded Process Compatible
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADE7878ACPZ
Manufacturer:
ST
Quantity:
7 500
Part Number:
ADE7878ACPZ
Manufacturer:
ADI
Quantity:
30
Part Number:
ADE7878ACPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADE7878ACPZ-RL
Manufacturer:
AD
Quantity:
210
Part Number:
ADE7878ACPZ-RL
Manufacturer:
RICOH
Quantity:
4 100
MASK1 is set, the IRQ1 interrupt pin is driven low in case of a
SAG event in the same moment the Status Bit 16 (SAG) in
STATUS1 register is set to 1. The SAG status bit in the STATUS1
register and all Bits[14:12] (VSPHASE[2], VSPHASE[1], and
VSPHASE[0]]) of the PHSTATUS register are cleared, and the
IRQ1 pin is returned to high by writing to the STATUS1
register with the status bit set to 1.
When the Phase B voltage falls below the indicated threshold
into the SAGLVL register for two line cycles, Bit VSPHASE[1]
in the PHSTATUS register is set to 1, and Bit VSPHASE[0] is
cleared to 0. Simultaneously, Bit 16 (SAG) in the STATUS1 register
is set to 1 to indicate the condition.
Note that the internal zero-crossing counter is always active. By
setting the SAGLVL register, the first SAG detection result is,
therefore, not executed across a full SAGCYC period. Writing to
the SAGCYC register when the SAGLVL register is already initia-
lized resets the zero-crossing counter, thus ensuring that the first
SAG detection result is obtained across a full SAGCYC period.
The recommended procedure to manage SAG events is the
following:
1.
2.
3.
4.
5.
SAG Level Set
The content of the SAGLVL[23:0] SAG level register is compared
to the absolute value of the output from HPF. Writing 5,928,256
(0x5A7540) to the SAGLVL register, puts the SAG detection
level at full scale (see the Voltage Channel ADC section), thus;
the SAG event is triggered continuously. Writing 0x00 or 0x01
puts the SAG detection level at 0, therefore, the SAG event is
never triggered.
As stated in the Current Waveform Gain Registers section, the
serial ports of the ADE78xx work on 32-, 16-, or 8-bit words.
Similar to the register presented in Figure 34, the SAGLVL
register is accessed as a 32-bit register with eight MSBs padded
with 0s.
Peak Detection
The ADE7854/ADE7858/ADE7868/ADE7878 record the
maximum absolute values reached by the voltage and current
channels over a certain number of half-line cycles and stores
Enable SAG interrupts in the MASK1 register by setting
Bit 16 (SAG) to 1.
When a SAG event happens, the IRQ1 interrupt pin goes
low and Bit 16 (SAG) in the STATUS1 is set to 1.
The STATUS1 register is read with Bit 16 (SAG) set to 1.
The PHSTATUS register is read, identifying on which
phase or phases a SAG event happened.
The STATUS1 register is written with Bit 16 (SAG) set to 1.
Immediately, the SAG bit and all Bits[14:12] (VSPHASE[2],
VSPHASE[1], and VSPHASE[0]) of the PHSTATUS register
are erased.
Rev. D | Page 35 of 96
them into the less significant 24 bits of the VPEAK and IPEAK
32-bit registers.
The PEAKCYC register contains the number of half-line cycles
used as a time base for the measurement. The circuit uses the
zero-crossing points identified by the zero-crossing detection
circuit. Bits[4:2] (PEAKSEL[2:0]) in the MMODE register select
the phases upon which the peak measurement is performed. Bit 2
selects Phase A, Bit 3 selects Phase B, and Bit 4 selects Phase C.
Selecting more than one phase to monitor the peak values
decreases proportionally the measurement period indicated in
the PEAKCYC register because zero crossings from more
phases are involved in the process. When a new peak value is
determined, one of Bits[26:24] (IPPHASE[2:0] or VPPHASE[2:0])
in the IPEAK and VPEAK registers is set to 1, identifying the
phase that triggered the peak detection event. For example, if a
peak value has been identified on Phase A current, Bit 24
(IPPHASE[0]) in the IPEAK register is set to 1. If next time a
new peak value is measured on Phase B, Bit 24 (IPPHASE[0])
of the IPEAK register is cleared to 0, and Bit 25 (IPPHASE[1])
of the IPEAK register is set to 1. Figure 48 shows the composition
of the IPEAK and VPEAK registers.
OF IPEAK
OF IPEAK
CURRENT
CURRENT
PHASE A
PHASE B
ADE7854/ADE7858/ADE7868/ADE7878
PEAK DETECTED
BIT 24
BIT 25
Figure 48. Composition of IPEAK[31:0] and VPEAK[31:0] Registers
ON PHASE C
31
PEAK VALUE WRITTEN INTO
IPEAK AT THE END OF SECOND
PEAKCYC PERIOD
00000
IPPHASE/VPPHASE BITS
27 26 25 24 23
PEAK DETECTED
Figure 49. Peak Level Detection
ON PHASE B
PEAK VALUE WRITTEN INTO
IPEAK AT THE END OF FIRST
PEAKCYC PERIOD
24 BIT UNSIGNED NUMBER
PEAK DETECTED
ON PHASE A
END OF FIRST
PEAKCYC = 16 PERIOD
BIT 24 OF IPEAK
CLEARED TO 0 AT
THE END OF SECOND
PEAKCYC PERIOD
END OF SECOND
PEAKCYC = 16 PERIOD
BIT 25 OF IPEAK
SET TO 1 AT THE
END OF SECOND
PEAKCYC PERIOD
0

Related parts for ADE7878ACPZ