cp3ub26 National Semiconductor Corporation, cp3ub26 Datasheet - Page 76

no-image

cp3ub26

Manufacturer Part Number
cp3ub26
Description
Reprogrammable Connectivity Processor With Usb And Can Interfaces
Manufacturer
National Semiconductor Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
cp3ub26G18NEP/NOPB
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
cp3ub26G18NEPX
Manufacturer:
Texas Instruments
Quantity:
10 000
www.national.com
15.2.2
Figure 17 shows equivalent circuits for the driver modes
used to measure the X, Y, and Z coordinates, in which Z rep-
resents pen force. In this discussion, the ohmic resistance
of the drivers is neglected (see Section 15.2.3), and series
resistance between the node of interest and the ADC is ig-
nored because it has no significant effect.
In the following examples, the ADC is assumed to operate
in single-ended mode to produce conversion values be-
tween 0 and 2047, however the same principles could be
extended to differential mode to recover the full range of the
ADC.
In Sample X mode, the X plate is driven between VCC and
ground, so that a value measured at node A on the TSY+ or
TSY- inputs is the center tap of a resistor-divider network.
The end-to-end resistance RXP of the X plate is:
The value measured at node A is proportional to the ratio
between the resistance to ground and the resistance of the
X plate:
Solving for RX2, the resistance is:
Similarly, in Sample Y mode the value measured at node B
on the TSX+ or TSX- inputs is proportional to the ratio be-
tween the resistance to ground and the resistance RYP of
the Y plate:
Because end-to-end resistance RYP of the Y plate is:
The previous equation can be rewritten as:
Figure 17. Touchscreen Driver Modes
Measuring Pen Force
RX2
------------ -
2047
RXP
RYP
B
------------ -
2047
------------ -
2047
=
A
B
=
=
=
RXP
RX1
RY1
RYP RY1
------------------------------ -
=
=
------------ -
RXP
------------ -
RYP
RYP
RX2
RY2
+
+
------------ -
2047
RX2
RY2
A
76
Solving for RY1, the resistance is:
Now that the resistance values RX2 and RY1 are known, it
is possible to calculate the value of the plate-to-plate con-
tact resistance, RZ, given the value measured at node C on
the TSX+ input in Sample Z mode. Node C is a tap in a re-
sistor-divider network composed of three resistors, such
that:
Solving for RZ, the resistance is:
The resistance RZ is proportional to the force of pen con-
tact.
15.2.3
Plate resistances between opposite electrodes range from
100 ohms to 1k ohm. Because of the 6-ohm driver resis-
tance, some significant voltage drop will be experienced be-
tween, for example, TSX- and AGND. A 200-ohm plate will
drop:
With a 2.5V supply, this is 70 mV. A 12-bit ADC has 4096
possible values, so each value covers a range of 610 µV at
2.5V. A voltage drop of 70 mV across each of the low-ohmic
drivers reduces the number of available ADC values by:
This effective loss of resolution can be handled in a number
of ways.
1. The voltages on, for example, TSY+ and TSY- can be
2. The ADC has a positive voltage reference input which
sampled before sampling TSX+ and TSX-. Then, scal-
ing can be applied in software to convert the samples
to the full (4096-bit) range. This technique will not re-
cover any resolution, however it is worthy of some con-
sideration because touchscreen data is typically
passed to two applications:
Signature Analysis—only the raw data is required. No
absolute positioning is necessary.
Screen Overlay—for example, for cursor positioning.
In this application, a scaling or calibration is performed
to correctly overlay the touchscreen coordinates onto
the display. Because of this calibration, it is not even
necessary to sample TSY+ and TSY-.
can be internally connected to the TSY+ terminal. This
means that the number of available ADC values is in-
creased to:
Software scaling could be applied to this value if re-
quired (as with technique 1, above), but no additional
resolution is achieved.
Compensation for Driver Resistance
RZ
---------------------------- -
200
RY1
------------ -
2047
=
C
+ +
4096
6
RX2
6
70 mV 2
--------------------------
=
610 uV
=
RYP
6
--------------------------------------------- -
RY1
------------------- -
610 uV
70 mV
2047 C
---------------------- -
AVCC AGND
+
RX2
1
=
C
RZ
230
+
------------ -
2047
=
RX2
B
3981
RY1

Related parts for cp3ub26