DSPIC30F4013 Microchip Technology Inc., DSPIC30F4013 Datasheet - Page 153

no-image

DSPIC30F4013

Manufacturer Part Number
DSPIC30F4013
Description
Dspic30f3014/4013 High-performance, 16-bit Digital Signal Controllers
Manufacturer
Microchip Technology Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-20I/P
Manufacturer:
Microchip
Quantity:
253
Part Number:
DSPIC30F4013-20I/P
Manufacturer:
AT
Quantity:
36
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F4013-30I/P
Manufacturer:
Microchip
Quantity:
3 183
Part Number:
DSPIC30F4013-30I/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICROCHIP
Quantity:
1 600
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICR0CHIP
Quantity:
20 000
Part Number:
DSPIC30F4013T-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013T-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
20.9
The Peripheral Module Disable (PMD) registers
provide a method to disable a peripheral module by
stopping all clock sources supplied to that module.
When a peripheral is disabled via the appropriate PMD
control bit, the peripheral is in a minimum power con-
sumption state. The control and STATUS registers
associated with the peripheral are also disabled so
writes to those registers have no effect and read values
are invalid.
A peripheral module is only enabled if both the associ-
ated bit in the PMD register is cleared and the periph-
eral is supported by the specific dsPIC DSC variant. If
the peripheral is present in the device, it is enabled in
the PMD register by default.
© 2007 Microchip Technology Inc.
Note:
Note:
Peripheral Module Disable (PMD)
Registers
If a PMD bit is set, the corresponding mod-
ule is disabled after a delay of 1 instruction
cycle. Similarly, if a PMD bit is cleared, the
corresponding module is enabled after a
delay of 1 instruction cycle (assuming the
module control registers are already
configured to enable module operation).
In the dsPIC30F3014 device, the T4MD,
T5MD, IC7MD, IC8MD, OC3MD, OC4MD
and DCIMD are readable and writable,
and are read as “1” when set.
20.10 In-Circuit Debugger
When MPLAB
In-Circuit Debugging functionality is enabled. This
function allows simple debugging functions when used
with MPLAB IDE. When the device has this feature
enabled, some of the resources are not available for
general use. These resources include the first 80 bytes
of Data RAM and two I/O pins.
One of four pairs of Debug I/O pins may be selected by
the user using configuration options in MPLAB IDE.
These pin pairs are named EMUD/EMUC, EMUD1/
EMUC1, EMUD2/EMUC2 and MUD3/EMUC3.
In each case, the selected EMUD pin is the Emulation/
Debug Data line, and the EMUC pin is the Emulation/
Debug Clock line. These pins interface to the MPLAB
ICD 2 module available from Microchip. The selected
pair of Debug I/O pins is used by MPLAB ICD 2 to send
commands and receive responses, as well as to send
and receive data. To use the In-Circuit Debugger
function of the device, the design must implement ICSP
connections to MCLR, V
selected EMUDx/EMUCx pin pair.
This gives rise to two possibilities:
1.
2.
dsPIC30F3014/4013
If EMUD/EMUC is selected as the Debug I/O pin
pair, then only a 5-pin interface is required, as
the EMUD and EMUC pin functions are multi-
plexed with the PGD and PGC pin functions in
all dsPIC30F devices.
If EMUD1/EMUC1, EMUD2/EMUC2 or EMUD3/
EMUC3 is selected as the Debug I/O pin pair,
then a 7-pin interface is required, as the
EMUDx/EMUCx pin functions (x = 1, 2 or 3) are
not multiplexed with the PGD and PGC pin
functions.
®
ICD 2 is selected as a Debugger, the
DD
, V
SS
, PGC, PGD and the
DS70138E-page 151

Related parts for DSPIC30F4013