ATmega16 Atmel Corporation, ATmega16 Datasheet - Page 199

no-image

ATmega16

Manufacturer Part Number
ATmega16
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATMEGA16
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL
Quantity:
28
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL
Quantity:
537
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AUR
Manufacturer:
Encoders
Quantity:
101
Part Number:
ATmega16-16PC
Manufacturer:
ATM
Quantity:
100
Part Number:
ATmega16-16PI
Manufacturer:
RFMD
Quantity:
101
Part Number:
ATmega16-16PU
Manufacturer:
Atmel
Quantity:
140
Combining Several
TWI Modes
Multi-master
Systems and
Arbitration
2466T–AVR–07/10
In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:
1. The transfer must be initiated
2. The EEPROM must be instructed what location should be read
3. The reading must be performed
4. The transfer must be finished
Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multi-master sys-
tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the
Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the Master keeps ownership of the bus. The following
figure shows the flow in this transfer.
Figure 94. Combining Several TWI Modes to Access a Serial EEPROM
If multiple Masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the Masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
Masters are trying to transmit data to a Slave Receiver.
Figure 95. An Arbitration Example
S
S = START
SDA
SCL
Transmitted from Master to Slave
SLA+W
TRANSMITTER
Device 1
MASTER
A
Master Transmitter
TRANSMITTER
ADDRESS
Device 2
MASTER
Device 3
RECEIVER
A
SLAVE
Rs = REPEATED START
Rs
Transmitted from Slave to Master
........
SLA+R
Device n
A
V
CC
ATmega16(L)
Master Receiver
DATA
R1
P = STOP
R2
A
P
199

Related parts for ATmega16