ATmega16 Atmel Corporation, ATmega16 Datasheet - Page 12

no-image

ATmega16

Manufacturer Part Number
ATmega16
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATMEGA16
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL
Quantity:
28
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL
Quantity:
537
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AUR
Manufacturer:
Encoders
Quantity:
101
Part Number:
ATmega16-16PC
Manufacturer:
ATM
Quantity:
100
Part Number:
ATmega16-16PI
Manufacturer:
RFMD
Quantity:
101
Part Number:
ATmega16-16PU
Manufacturer:
Atmel
Quantity:
140
The X-register, Y-
register and Z-register
Stack Pointer
2466T–AVR–07/10
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the Data Space. The three indirect
address registers X, Y, and Z are defined as described in
Figure 5. The X-register, Y-register, and Z-register
In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer. If software reads the Program Counter from the Stack after a call or an interrupt, unused
bits (15:13) should be masked out.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above $60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.
X - register
Y - register
Z - register
Bit
Read/Write
Initial Value
SP15
R/W
SP7
R/W
15
7
0
0
15
7
R27 ($1B)
15
7
R29 ($1D)
15
7
R31 ($1F)
SP14
SP6
R/W
R/W
14
6
0
0
SP13
SP5
R/W
R/W
13
5
0
0
XH
YH
ZH
0
SP12
R/W
R/W
SP4
12
4
0
0
SP11
R/W
R/W
SP3
11
3
0
0
0
0
7
R26 ($1A)
7
R28 ($1C)
7
R30 ($1E)
SP10
R/W
SP2
R/W
10
Figure
2
0
0
5.
SP9
SP1
R/W
R/W
9
1
0
0
XL
YL
ZL
ATmega16(L)
0
SP8
SP0
R/W
R/W
8
0
0
0
SPH
SPL
0
0
0
0
0
12

Related parts for ATmega16