AT90PWM216 Atmel Corporation, AT90PWM216 Datasheet - Page 182

no-image

AT90PWM216

Manufacturer Part Number
AT90PWM216
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90PWM216

Flash (kbytes)
16 Kbytes
Pin Count
24
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
19
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
2
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 105
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
1
Pwm Channels
7
32khz Rtc
No
Calibrated Rc Oscillator
Yes
17.2.4
7710F–AVR–09/11
SPI Control Register – SPCR
• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.
• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.
• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.
• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to
marized below:
Table 17-2.
• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to
functionality is summarized below:
Table 17-3.
Bit
Read/Write
Initial Value
CPHA
CPOL
CPOL Functionality
CPHA Functionality
0
1
0
1
SPIE
R/W
7
0
Figure 17-3
SPE
R/W
6
0
and
DORD
R/W
5
0
Figure 17-4
Figure 17-3
Leading Edge
Leading Edge
Sample
MSTR
Falling
Rising
R/W
Setup
4
0
for an example. The CPOL functionality is sum-
and
CPOL
R/W
3
0
Figure 17-4
CPHA
AT90PWM216/316
R/W
2
0
for an example. The CPOL
SPR1
R/W
1
0
Trailing Edge
Trailing Edge
Sample
Falling
Rising
Setup
SPR0
R/W
0
0
SPCR
182

Related parts for AT90PWM216