AT90PWM216 Atmel Corporation, AT90PWM216 Datasheet - Page 162

no-image

AT90PWM216

Manufacturer Part Number
AT90PWM216
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90PWM216

Flash (kbytes)
16 Kbytes
Pin Count
24
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
19
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
2
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 105
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
12
Input Capture Channels
1
Pwm Channels
7
32khz Rtc
No
Calibrated Rc Oscillator
Yes
16.22.1
16.23 PSC Clock Sources
7710F–AVR–09/11
Fault events in Autorun mode
PRUNn and PARUNn bits are located in PCTLn register.
on page 167. See “PSC 1 Control Register – PCTL1” on page 168. See “PSC 2 Control Register
– PCTL2” on page 169.
Note : Do not set the PARUNn bits on the three PSC at the same time.
Thanks to this feature, we can for example configure two PSC in slave mode (PARUNn = 1 /
PRUNn = 0) and one PSC in master mode (PARUNm = 0 / PRUNm = 0). This PSC master can
start all PSC at the same moment ( PRUNm = 1).
To complete this master/slave mechanism, fault event (input mode 7) is propagated from PSCn-
1 to PSCn and from PSCn to PSCn-1.
A PSC which propagate a Run signal to the following PSC stops this PSC when the Run signal
is deactivate.
According to the architecture of the PSC synchronization which build a “daisy-chain on the PSC
run signal” beetwen the three PSC, only the fault event (mode 7) which is able to “stop” the PSC
through the PRUN bits is transmited along this daisy-chain.
A PSC which receive its Run signal from the previous PSC transmits its fault signal (if enabled)
to this previous PSC. So a slave PSC propagates its fault events when they are configured and
enabled.
PSC must be able to generate high frequency with enhanced resolution.
Each PSC has two clock inputs:
Figure 16-39. Clock selection
PCLKSELn bit in PSC n Configuration register (PCNFn) is used to select the clock source.
PPREn1/0 bits in PSC n Control Register (PCTLn) are used to select the divide factor of the
clock.
• CLK PLL from the PLL
• CLK I/O
CLK
CLK
PLL
I/O
PCLKSELn
1
0
CK
PRESCALER
See “PSC 0 Control Register – PCTL0”
AT90PWM216/316
CLK
PSCn
PPREn1/0
162

Related parts for AT90PWM216